Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Chen, Xi / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 7-8

Issues

Return Mapping Algorithms (RMAs) for Two-Yield Surface Thermoviscoplastic Models Using the Consistent Tangent Operator

Grégory Antoni / Frédéric Lebon / Thierry Désoyer
Published Online: 2018-09-19 | DOI: https://doi.org/10.1515/ijnsns-2017-0073

Abstract

The return mapping algorithms (RMAs) presented here are designed for use with pressure-dependent thermoviscoplastic constitutive models involving irreversible effects associated with solid–solid phase transformations. During the volume solid–solid phase transformations occurring under mechanical loads, an “anomalous” plasticity, the so-called “TRansformation Induced Plasticity” (TRIP), is generated at much lower stress levels than those related to the yield stress of the material in the context of the classical plasticity. TRIP mechanisms are superimposed on the classical plasticity which is liable to occur in the case of metallic materials. Based on a non-standard generalized material framework, two different models are presented in which an “associative” plastic flow is introduced in the context of classical plasticity and a “non-associative” flow rule in the context of TRIP-like plasticity. In this paper, a complete algorithmic treatment of these two rate-dependent constitutive models is therefore proposed with the associated consistent tangent operator for dealing the quasi-surface irreversible solid–solid transformations which can appear in metal alloys during specific thermomechanical solicitations. The predictive abilities of the presented numerical procedure for modelling this kind of the irreversible solid–solid transformations involving two plasticity processes are tested and assessed by performing a two-dimensional finite-element analysis on some numerical examples.

Keywords: transformation-induced plasticity,quasi-surface irreversible solid–solid phase transformations,return mapping algorithms,consistent tangent operator,finite-element analysis

References

  • [1]

    Q. S. Nguyen, On the elastic-plastic initial-boundary value problem and its numerical integration, Int. J. Numer. Methods Eng. 11 (1977), 817–832.CrossrefGoogle Scholar

  • [2]

    J. C. Simo, R. L. Taylor, Consistent tangent operators for rate-independent elastoplasticity, Comput. Meth. Appl. Mech. Eng. 48 (1985), 101–118.CrossrefGoogle Scholar

  • [3]

    J. C. Simo, R. L. Taylor, A return mapping algorithm for plane stress elastoplasticity, Int. J. Numer. Methods Eng. 22 (1986), 649–670.Crossref

  • [4]

    J. C. Simo, T. R. J. Hughes, Computational Inelasticity, Springer Verlag, New York, 1997.Google Scholar

  • [5]

    M. Ortiz, E. P. Popov, Accuracy and stability of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Meth. Eng. 21 (1985), 1561–1576.CrossrefGoogle Scholar

  • [6]

    M. Ortiz, J. C. Simo, An analysis of a new class of integration algorithms for elastoplastic constitutive relations, Int. J. Numer. Meth. Eng. 23 (1986), 353–366.CrossrefGoogle Scholar

  • [7]

    M. Bonnet, S. Mukherjee, Implicit BEM formulations for usual and sensitivity problems in elasto-plasticity using the consistent tangent operator concept, Int. J. Solids Struct. 33 (1996), 1395–1416.Google Scholar

  • [8]

    H. Poon, S. Mukherjee, M. Bonnet, Numerical implementation of a CTO-base implicit approach for the BEM solution of usual and sensitivity problems in elasto-plasticity, Eng. Anal. Boundary Elem. 22 (1998), 257–269.CrossrefGoogle Scholar

  • [9]

    C. A. Vidal, R. B. Haber, Design sensitivity analysis for rate-independent elastoplasticity, Comput. Meth. Appl. Mech. Eng. 107 (1993), 393–431.CrossrefGoogle Scholar

  • [10]

    N. Aravas, On the numerical integration of a class of pressure-dependent plasticity models, Int. J. Numer. Meth. Eng. 24 (1987), 1395–1416.CrossrefGoogle Scholar

  • [11]

    Z. L. Zhang, On the accuracies of numerical implementation algorithms for Gurson-based pressure-dependent elastoplastic constitutive models, Comput. Meth. Appl. Mech. Eng. 121 (1995), 15–28.CrossrefGoogle Scholar

  • [12]

    Z. L. Zhang, Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models, Comput. Meth. Appl. Mech. Eng. 121 (1995), 29–44.CrossrefGoogle Scholar

  • [13]

    J. Clausen, L. Damkilde, L. Andersen, An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space, Comput. Struct. 85 (2007), 1795–1807.CrossrefWeb of ScienceGoogle Scholar

  • [14]

    M. Kleiber, Computational coupled non-associative thermoplasticity, Comput. Meth. Appl. Mech. Eng. 90 (1991), 943–967.CrossrefGoogle Scholar

  • [15]

    J. C. Ju, Consistent tangent moduli for a class viscoplasticity, J. Eng. Mech.} 116 (1990), 1764–1779.CrossrefGoogle Scholar

  • [16]

    A. Eleöd, F. Oucherif, J. Devecz, Y. Berthier, Conception of numerical and experimental tools for study of the Tribological Transformation of Surface (TTS), Proceedings of Lubrication at the Frontier: The Role of the Interface and Surface Layers in the Thin Film and Boundary Regime 673–682, 1999.Google Scholar

  • [17]

    G. Antoni, T. Désoyer, F. Lebon, A combined thermo-mechanical model for Tribological Surface Transformations, Mech. Mater. 49 (2012), 92–99.Web of ScienceCrossrefGoogle Scholar

  • [18]

    G. Baumann, H. J. Fecht, S. Liebelt, Formation of white-etching layers on rail treads, Wear 191 (1996), 133–140.CrossrefGoogle Scholar

  • [19]

    W. Österle, H. Rooch, A. Pyzalla, L. Wang, Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction, Mater. Sci. Eng.: A 303 (2001), 150–157.CrossrefGoogle Scholar

  • [20]

    G. Antoni, T. Désoyer, F. Lebon, A thermo-mechanical modelling of the Tribological Transformations of Surface, C.R. Mec. 337 (2009), 653–658.Web of ScienceCrossrefGoogle Scholar

  • [21]

    A. Boudiaf, L. Taleb, M. E. A. Belouchrani, Effects of the austenite grain size on transformation plasticity in a 35 NCD 16 steel, Int. J. Microstruct. Mater. Prop. 5 (2010), 338–353.Google Scholar

  • [22]

    M. Dalgic, A. Irretier, H-W Zoch, G. Lowisch, Transformation plasticity at different phase transformation of a through hardening bearing steel, Int. J. Microstruct. Mater. Prop. 3 (2008), 49–64.Google Scholar

  • [23]

    G. W. Greenwood, R. H. Johnson, The deformation of metals under small stresses during phase transformations, Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 293 (1965), 403–422.Google Scholar

  • [24]

    T. Inoue, Mechanism of transformation plasticity and the unified constitutive equation for transformation-thermo-mechanical plasticity with some applications’, Int. J. Microstruct. Mater. Prop. 5 (2010), 319–327.Google Scholar

  • [25]

    R. Quey, F. Barbe, H. Hoang, L. Taleb, Effect of the random spatial distribution of nuclei on the transformation plasticity in diffusively transforming steel, Int. J. Microstruct. Mater. Prop. 5 (2010), 354–364.Google Scholar

  • [26]

    J. B. Leblond, J. Devaux, J. C. Devaux, Mathematical modelling of transformation plasticity in steels – Case of ideal-plastic phases. Int. J. Plast. 5 (1989), 551–571.CrossrefGoogle Scholar

  • [27]

    J. B. Leblond, J. Devaux, J. C. Devaux, Mathematical modelling of transformation plasticity in steels – Coupling with strain hardening phenomena, Int. J. Plast. 5 (1989), 573–591.CrossrefGoogle Scholar

  • [28]

    L. Taleb, F. Sidoroff, A micromechanical modeling of the Greenwood-Johnson mechanism in transformation induced plasticity, Int. J. Plast. 19 (2003), 1821–1842.CrossrefGoogle Scholar

  • [29]

    J. C. Videau, G. Cailletaud, A. Pineau, Modélisation des effets mécaniques des transformations de phases pour le calcul de structures, J. de Physique IV, Colloque C3, supplément au Journal de Physique III 4 (1994), 227–232.Google Scholar

  • [30]

    J. C. Videau, G. Cailletaud, A. Pineau, Experimental study of the transformation induced plasticity in a Cr-Ni-Mo-Al-Ti steel, Journal de Physique IV, Colloque C1, supplément au Journal de Physique III, 6 (1996), 465–474.Google Scholar

  • [31]

    G. Antoni, T. Désoyer, F. Lebon, Tribological Transformations of Surface: a thermo-mechanical modelling, Proceedings The Tenth International Conference on Computational Structures Technology, CD-ROM, 14p, 2010.Google Scholar

  • [32]

    G. Antoni, Transformation Tribologique de Surface: une approche thermo-mécanique, PhD thesis}, Université de Provence, France, 2010.Google Scholar

  • [33]

    J. Besson, G. Cailletaud, J. L. Chaboche, S. Forest ’M&’ecanique non lin&’eaire des mat&’eriaux’, Hermès Science Publications, France, 2001.Google Scholar

  • [34]

    J. Lemaitre, J. L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, United Kingdom, 1990.Google Scholar

  • [35]

    J. Garrigues, Fondements de la m&’ecanique des milieux continus Hermes (2007).Google Scholar

  • [36]

    J. C. Simo, S. Govindjee, Exact closed-form solution of the return mapping algorithm in plane stress elasto-viscoplasticity, Eng. Comput. 5 (1988), 254–258CrossrefGoogle Scholar

  • [37]

    J. C. Simo, S. Govindjee, B-Stability and symmetry preserving return mapping algorithms in plasticity and viscoplasticity, Int. J. Numer. Methods Eng. 31 (1991), 151–176.CrossrefGoogle Scholar

  • [38]

    J. C. Simo, C. Miehe, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Meth. Appl. Mech. Eng. 98 (1992), 41–104.CrossrefGoogle Scholar

  • [39]

    M. Bonnet, A. Frangi, Analyse des solides d&’eformables par la m&’ethode des &’el&’ements finis, Editions de l’&’ecole Polytechnique Palaiseau, France, 2007.Google Scholar

  • [40]

    M. Abbas, ’Algorithme non lin&’eaire quasi-statique’, Code\_Aster Technical Note, R50301, France, 2013.Google Scholar

  • [41]

    R. Halama, Z. Poruba, Tangent modulus in numerical integration of constitutive relations and its influence on convergence of N-R method, Appl. Comput. Mech. 3 (2009), 27–38.Google Scholar

  • [42]

    R. Blaheta, O. Jakl, J. Stary, Displacement decomposition and parallelisation of the PCG method for elasticity problems, Int. J. Comput. Sci. Eng. 1 (2/3/4) (2005), 183–191.Google Scholar

  • [43]

    I. Ficza, M. Vaverka;, M. Hartl, Numerical solution of contact pressure in lubricated non-smooth point contact using convolution algorithms, Int. J. Comput. Sci. Eng. 9 (5/6) (2014), 457–464.Google Scholar

  • [44]

    H. Busing, J. Willkomm, C. H. Bischof, C. Clauser, Using exact Jacobians in an implicit Newton method for solving multiphase flow in porous media, Int. J. Comput. Sci. Eng. 9 (5/6) (2014), 499–508.Google Scholar

  • [45]

    M. R. Gosz, Finite Element Method: Applications in Solids, Structures, and Heat Transfer, CRC Press, 2005.Google Scholar

  • [46]

    G. H. Paulino, Y. Liu, Implicit consistent and continuum tangent operators in elastoplastic boundary element formulations, Comput. Meth. Appl. Mech. Eng. 190 (2001), 2157–2179.CrossrefGoogle Scholar

  • [47]

    G. Widlak, Radial Return method applied in thick-walled cylinder analysis, J. Theor. Appl Mech. 48 (2010), 381–395.Google Scholar

  • [48]

    Nukala, P. K. V. V., A return mapping algorithm for cyclic viscoplastic constitutive models. Comput Meth. Appl. Mech. Eng. 195 (2006), 148–178.CrossrefGoogle Scholar

About the article

Received: 2017-03-23

Accepted: 2018-08-10

Published Online: 2018-09-19

Published in Print: 2018-12-19


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 7-8, Pages 681–697, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0073.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in