Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Chen, Xi / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi

IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

See all formats and pricing
More options …
Volume 19, Issue 7-8


Nonlinear Wave Modulation in Nanorods Using Nonlocal Elasticity Theory

Guler Gaygusuzoglu / Metin Aydogdu / Ufuk Gul
Published Online: 2018-10-20 | DOI: https://doi.org/10.1515/ijnsns-2017-0225


In this study, nonlinear wave modulation in nanorods is examined on the basis of nonlocal elasticity theory. Eringen's nonlocal elasticity theory is employed to derive nonlinear equations for the motion of nanorods. The analysis of the modulation of axial waves in nonlocal elastic media is performed, and the reductive perturbation method is used for the solution of the nonlinear equations. The propagation of weakly nonlinear and strongly dispersive waves is investigated, and the nonlinear Schrödinger (NLS) equation is acquired as an evolution equation. For the purpose of a numerical investigation of the nonlocal impacts on the NLS equation, it has been investigated whether envelope solitary wave solutions exist by utilizing the physical and geometric features of the carbon nanotubes. Amplitude dependent wave frequencies, phase and group velocities have been obtained and they have compared for the linear local, the linear nonlocal, the nonlinear local and the nonlinear nonlocal cases.

Keywords: nanorods; nonlocal elasticity; wave modulation; reductive perturbation technique

PACS: 05.45.Yv; 11.10.Lm; 43.25.Dc


  • [1]

    A.C. Eringen and E.S. Suhubi, Nonlinear theory of simple micro-elastic solids-I, Int. J. Engng. Sci. 2 (1964), 189–203.CrossrefGoogle Scholar

  • [2]

    A.C. Eringen, Simple microfluids, Int. J. Engng. Sci. 2 (1964), 205–217.CrossrefGoogle Scholar

  • [3]

    A.C. Eringen, Theory of micropolar elasticity in Fracture (Edited by H. Liebowitz), Vol. II, pp. 621–729, Academic Press, New York, 1968.Google Scholar

  • [4]

    C.B. Kafadar and A.C. Eringen, Micropolar media-I. The classical theory, Int. J. Engng. Sci. 9 (1971), 271–305.CrossrefGoogle Scholar

  • [5]

    A.C. Eringen, Nonlocal polar elastic continua, Int. J. Engng. Sci. 10 (1972), 1–16.CrossrefGoogle Scholar

  • [6]

    A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. App. Phys. 54 (1983), 4703–4710.CrossrefGoogle Scholar

  • [7]

    R.A. Toupin, Elastic materials with coupled stresses, Arch. Rat. Mech. Analys. 11 (1962), 385.CrossrefGoogle Scholar

  • [8]

    S.K. Park and X.L. Gao, Bernoulli-Euler beam model based on a modified coupled stress theory, J. Micromech. Microengng. 16 (2006), 2355–2359.CrossrefGoogle Scholar

  • [9]

    H.M. Ma, X.L. Gao and J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Sol. 56 (2008), 3379–3391.CrossrefGoogle Scholar

  • [10]

    T. Murmu and S.C. Pradhan, Small-scale effect on the vibration on the nonuniform nanocantiliver based on nonlocal elasticity theory, Physica E. 41 (2009), 1451–1456.CrossrefGoogle Scholar

  • [11]

    V. Senthilkumar, S.C. Pradhan and G. Pratap, Small-scale effect on buckling analysis of carbon nanotube with Timoshenko theory by using differantial transform method, Adv. Sci. Lett. 3 (2010), 1–7.Google Scholar

  • [12]

    O. Rahmani and O. Pedram, Analysis and modelling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Int. J. Engng Sci. 77 (2014), 55–70.CrossrefGoogle Scholar

  • [13]

    A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, In. J. Engng. Sci. 10 (1972), 1–16.Google Scholar

  • [14]

    A.C. Eringen and D.G.B. Edelen, On nonlocal elasticity, Int. J. Engng. Sci. 10 (1972), 233–248.CrossrefGoogle Scholar

  • [15]

    H.T. Thai, A nonlocal beam theory for bending, buckling and vibration of nanobeams, Int. J. Engng. Sci. 52 (2012), 56–64.CrossrefGoogle Scholar

  • [16]

    M. Aydogdu, Axial vibration of the nonaroads with the nonlocal continuum rod model, Physica E. 41 (2009), 861–864.CrossrefGoogle Scholar

  • [17]

    M. Aydogdu, Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal theory, Mech. Res. Commun. 43 (2012), 34–40.CrossrefGoogle Scholar

  • [18]

    C.W. Lim and Y. Yang, Wave propagation in carbon nanotubes: Nonlocal elasticity-induced stiffness and velocity enhancement effects, J. Mech. Mater. Struct. 5 (2010), 459–476.CrossrefGoogle Scholar

  • [19]

    Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He and B.I. Yakobson, Nonlocal shell model for elastic wave propagation single- and double-walled carbon nanotubes, J. Mech. Phys. Solids 56 (2008), 3475–3485.CrossrefGoogle Scholar

  • [20]

    S. Narendar, Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia, Physica E. 43 (2011), 1015–1020.CrossrefGoogle Scholar

  • [21]

    S. Narendar and S. Gopalakrishnan, Temperature effects on wave propagation in nanoplates, Compos. Part B 43 (2012), 1275–1281.CrossrefGoogle Scholar

  • [22]

    S. Narendar and S. Gopalakrishnan, Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes, Comput. Mater. Sci. 47 (2009), 526–538.CrossrefGoogle Scholar

  • [23]

    M. Aydogdu, Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics, Int. J. Engng Sci. 56 (2012), 17–28.CrossrefGoogle Scholar

  • [24]

    M. Aydogdu, Longitudinal wave propagation in multiwalled carbon nanotubes, Comp. Struct. 107 (2014), 578–584.CrossrefGoogle Scholar

  • [25]

    H. Wang, K. Dong, F. Men, Y.J. Yan and X. Wang, Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix, Appl. Math. Model. 34 (2010), 878–889.CrossrefGoogle Scholar

  • [26]

    S. Narendar, S.S. Gupta and S. Gopalakrishnan, Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory, Appl. Math. Model. 36 (2012), 4529–4538.CrossrefGoogle Scholar

  • [27]

    K. Kiani, Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models, Physica E 45 (2012), 86–96.CrossrefGoogle Scholar

  • [28]

    T. Murmu, M.A. McCarthy and S. Adhikari, Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach, J. Sound Vib. 331 (2012), 5069–5086.CrossrefGoogle Scholar

  • [29]

    W. Yang, X.L. Ma, H. Wang and W. Hong, The advancement of nanomechanics, Adv. Mech. 33 (2003), 175–185.Google Scholar

  • [30]

    Y.X. Zhen, B. Fang and Y. Tang, Thermal–Mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium, Physica E 44 (2011), 379–385.CrossrefGoogle Scholar

  • [31]

    T.P. Chang, Thermal–Mechanical vibration and instability of a fluid-conveying single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, App. Math. Model. 36 (2012), 1964–1973.CrossrefGoogle Scholar

  • [32]

    A. Ghorbanpour Arani, A. Hafizi Bidgoli, A. Karamali Ravandi, M.A. Roudbari, S. Amir and M.B. Azizkhani, Induced nonlocal electric wave propagation of boron nitride nanotubes, J. Mech. Sci. Tech. 27 (2013), 3063–3071.CrossrefGoogle Scholar

  • [33]

    A. Ghorbanpour Arani, M.A. Roudbari and S. Amir, Longitudinal magnetic field effect on wave propagation of fluid-conveyed SWCNT using Knudsen number and surface considerations, App. Math. Model. 40 (2016), 2025–2038.CrossrefGoogle Scholar

  • [34]

    H. Cho, M.F. Yu, A.F. Vakakis, L.A. Bergman and D.M. McFarland, Tunable, Broadband Nonlinear Nanomechanical Resonator, Nano Lett. 10 (2010), 1793–1798.CrossrefGoogle Scholar

  • [35]

    Y.M. Fu, J.W. Hong and X.Q. Wang, Analysis of nonlinear vibration for embedded carbon nanotubes, J. Sound Vib. 296 (2006), 746–756.CrossrefGoogle Scholar

  • [36]

    Y. Yan, W. Wang and I. Zhang, Applied multiscale method to analysis of nonlinear vibration for double-walled carbon nanotubes, Appl. Math. Model. 35 (2011), 2279–2289.CrossrefGoogle Scholar

  • [37]

    R. Ansari, M. Hemmatnezhad and J. Rezapour, The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions, Curr. Appl. Phys 11 (2011), 692–697.CrossrefGoogle Scholar

  • [38]

    P. Soltani, D.D. Ganji, I. Mehdipour and A. Farshidianfar, Nonlinear vibration and rippling instability for embedded carbon nanotubes, J. Mech. Sci. Tech. 26 (2012), 985–992.CrossrefGoogle Scholar

  • [39]

    B. Fang, Y.X. Zhen, C.P. Zhang and Y. Tang, Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory, Appl. Math. Model. 37 (2013), 1096–1107.CrossrefGoogle Scholar

  • [40]

    A. Erbe, H. Krömmer, A. Kraus, R.H. Blick, G. Corso and K. Richter, Mechanical mixing in nonlinear nanomechanical resonators, Appl. Phys. Lett. 77 (2000), 3102.CrossrefGoogle Scholar

  • [41]

    S. Erbay, H.A. Erbay and S. Dost, Nonlinear wave modulation in micropolar elastic media-I. Longitudional waves, Int. J. Engng. Sci. 29 (1991), 845–858.CrossrefGoogle Scholar

  • [42]

    H.A. Erbay and S. Erbay, Nonlinear wave modulation in fluid filled distensible tubes, Acta Mechanica 104 (1994), 201–214.CrossrefGoogle Scholar

  • [43]

    G. Akgun and H. Demiray, Nonlinear wave modulation in a pre-stressed viscoelastic thin tube filled with an inviscid fluid, Int. J. Non-linear Mech. 34 (1999), 571–588.CrossrefGoogle Scholar

  • [44]

    G. Akgun and H. Demiray, Modulation of non-linear axial and transverse waves in a fluid-filled thin elastic tube, Int. J. Non-linear Mech. 35 (2000), 597–611.CrossrefGoogle Scholar

  • [45]

    H.A. Erbay, S. Erbay and A. Erkip, Unidirectional wave motion in nonlocally and nonlinearly elastic medium: The KdV, BBM and CH equations, Nonlinear Waves 64 (2015), 256–264.Google Scholar

  • [46]

    N. Duruk, H.A. Erbay and A. Erkip, Blow-up and global existence for a general class of nonlocal nonlinear coupled wave equations, J. Differ. Equations 250 (2011), 1448–1459.CrossrefGoogle Scholar

  • [47]

    S.A. Silling, Solitary waves in a peridynamic elastic solid, J. Mech. Phys. Solids 96 (2016), 121–132.CrossrefGoogle Scholar

  • [48]

    L.E. Malvern, Introduction to the Mechanics of a Continuum Medium, Prentice Hall, Englwood Cliffs, New Jersey, 1969.Google Scholar

  • [49]

    S.M. Mousavi and S.J. Fariborz, Free vibration of a rod undergoing finite strain, J. Phys. Conferans Series 382 (2012) 012011.CrossrefGoogle Scholar

  • [50]

    A. Jeffrey and T. Kawahara, Asymptotic methods in nonlinear wave theory, Pitman, Boston, 1982.Google Scholar

  • [51]

    G.L. Lamb Jr. and DW. Mc Laughlin. Aspects of Soliton Physics. In: Bullough R.K. and Coudrey P.J. (Eds), Solitons. Topics in Current Physics, Springer, Berlin, 17 (1980), 65–106.Google Scholar

  • [52]

    T. Zhan-Chun, Single walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number, Physics Rev. B 65 (2002), 233–237.Google Scholar

  • [53]

    K.L. Manktelow, M. Ruzzene and M.J. Leamy, Wave propagation in nonlinear lattice materials, Dyn. Lattice Mater. (2017), 107–137.Google Scholar

  • [54]

    T.R. Taha and M.J. Ablowitz, Analitical and numerical aspects of certain nonlinear evolution equations. II Numerical nonlinear Schrödinger equation, J. Comput. Phys. 55 (1984), 203–230.CrossrefGoogle Scholar

  • [55]

    M.H. Abedinnasab and M.I. Hussein, Wave dispersion under finite deformation, Wave Motion 50 (2013), 374–388.CrossrefGoogle Scholar

About the article

Received: 2017-10-17

Accepted: 2018-10-06

Published Online: 2018-10-20

Published in Print: 2018-12-19

Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 7-8, Pages 709–719, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2017-0225.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in