Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Armbruster, Dieter / Chen, Xi / Bessaih, Hakima / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 19, Issue 7-8

Issues

A Collocation Method Based on Jacobi and Fractional Order Jacobi Basis Functions for Multi-Dimensional Distributed-Order Diffusion Equations

M. A. Abdelkawy
  • Corresponding author
  • Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
  • Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-23 | DOI: https://doi.org/10.1515/ijnsns-2018-0111

Abstract

In this work, shifted fractional-order Jacobi orthogonal function in the interval [0,T] is outputted of the classical Jacobi polynomial (see Definition 2.3). Also, we list and derive some facts related to the shifted fractional-order Jacobi orthogonal function. Spectral collocation techniques are addressed to solve the multidimensional distributed-order diffusion equations (MDODEs). A mixed of shifted Jacobi polynomials and shifted fractional order Jacobi orthogonal functions are used as basis functions to adapt the spatial and temporal discretizations, respectively. Based on the selected basis, a spectral collocation method is listed to approximate the MDODEs. By means of the selected basis functions, the given conditions are automatically satisfied. We conclude with the application of spectral collocation method for multi-dimensional distributed-order diffusion equations.

Keywords: spectral collocation method; caputo fractional derivative; distributed order fractional diffusion equation

JEL Classification: C02

MSC 2010: 97N40; 65M70; 34A08; 41A55

References

  • [1]

    A. Dabiri and E. A. Butcher, Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods, Appl. Math. Model. 56 (2018), 424–448.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    A. Dabiri and E. A. Butcher, Efficient modified Chebyshev differentiation matrices for fractional differential equations, Commun. Nonlinear Sci. 50 (2017), 284–310.CrossrefWeb of ScienceGoogle Scholar

  • [3]

    J. A. T. Machado and B. P. Moghaddam, A robust algorithm for nonlinear variable-order fractional control systems with delay, Int. J. Nonlinear Sci. Num. 19 (2018), doi: 10.1515/ijnsns-2016-0094.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    F. K. Keshi, B. P. Moghaddam and A. Aghili, A numerical approach for solving a class of variable-order fractional functional integral equations, Comput. Appl. Math. 37 (2018), 4821–4834.CrossrefWeb of ScienceGoogle Scholar

  • [5]

    M. Giona and H. E. Roman, Fractional diffusion equation for transport phenomena in random media, Phys. A. 185 (1992), 87–97.Google Scholar

  • [6]

    I. Podlubny, Fractional differential equations, in: Mathematics in science and engineering, Academic Press Inc., San Diego, CA, 1999.Google Scholar

  • [7]

    R. Hilfer, Applications of fractional calculus in physics, Word Scientific, Singapore, 2000.Google Scholar

  • [8]

    E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations, Appl. Math. Model. 35 (2011), 5662–5672.Web of ScienceCrossrefGoogle Scholar

  • [9]

    A. H. Bhrawy and M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys. 281 (2015), 876–895.CrossrefWeb of ScienceGoogle Scholar

  • [10]

    N. Ford and M. Morgado, Distributed order equations as boundary value problems, Comput. Math. Appl. 64 (2012), 2973–2981.CrossrefGoogle Scholar

  • [11]

    M. L. Morgado and M. Rebelo, Numerical approximation of distributed order reaction-diffusion equations, J. Comput. Appl. 275 (2015), 216–227.CrossrefWeb of ScienceGoogle Scholar

  • [12]

    T. T. Hartley and C. F. Lorenzo, Fractional-order system identification based on continuous order-distributions, Signal Process, 83 (2003), 2287–2300.CrossrefGoogle Scholar

  • [13]

    T. M. Atanackovic, L. Oparnica and S. Pilipovic, Semilinear ordinary differential equation coupled with distributed order fractional differential equation, Nonlinear Anal. Theory Methods Appl. 72 (2010), 4101–4114.Web of ScienceCrossrefGoogle Scholar

  • [14]

    M. Caputo, Elasticite dissipazione, Zanichelli, Bologna, 1969.Google Scholar

  • [15]

    N. J. Ford, M. L. Morgado and M. Rebelo, An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time, Electron. Trans. Numer. Anal. 44 (2015), 289–305.Google Scholar

  • [16]

    N. J. Ford, M. L Morgado and M. Rebelo, A numerical method for the distributed order time-fractional diffusion equation, in: Proceedings of the International Conference on Fractional Differentiation and Its Applications, IEEE (2014), 1–6.Google Scholar

  • [17]

    V. G. Pimenov, A. S. Hendy and R. H. De Staelen, On a class of non-linear delay distributed order fractional diffusion equations, J. Comput. Appl. Math. 318 (2017), 433–443.CrossrefWeb of ScienceGoogle Scholar

  • [18]

    W. Bu, A. Xiao and W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput. 72 (2017), 422–441.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    W. Fan and F. Liu, A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain, Appl. Math. Lett. 77 (2018), 114–121.Web of ScienceCrossrefGoogle Scholar

  • [20]

    A. H. Bhrawy and M. A. Zaky, Numerical simulation of multi-dimensional distributed-order generalized Schrdinger equations, Nonlinear Dyn. 89 (2017), 1415–1432.CrossrefGoogle Scholar

  • [21]

    M. A. Zaky, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dyn. 91 (2018), 2667–2681.Web of ScienceCrossrefGoogle Scholar

  • [22]

    M. A. Zaky and J. A. T. Machado, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. 52 (2017), 177–189.Web of ScienceCrossrefGoogle Scholar

  • [23]

    A. H. Khater, W. Malfliet, D. K. Callebaut and E. S. Kamel, The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction-diffusion equations, Chaos Soliton Fract. 14 (2002), 513–522.Google Scholar

  • [24]

    K. Mayawala, D. G. Vlachos and J. S. Edwards, Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations, Biophys Chem. 121 (2006), 194–208.CrossrefGoogle Scholar

  • [25]

    P. A. Markowich and P. Szmolyan, A system of convection-diffusion equations with small diffusion coefficient arising in semiconductor physics, J. Differ. Equations, 81 (1989), 234–254.CrossrefGoogle Scholar

  • [26]

    A. Kolmogorov, I. Petrovskii and N. Piscounov, A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, Math. Appl. 25 (1991), 242–270.Google Scholar

  • [27]

    A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969), 279–303.Google Scholar

  • [28]

    L. A. Segel, Distant sidewalls cause slow amplitude modulation of cellular convection, J. Fluid Mech. 38 (1969), 203–224.CrossrefGoogle Scholar

  • [29]

    Y. B. Zeldovich and D. A. Frank-Kamenetsky, A theory of thermal propaga- tion of flame, Acta Physicochim. 9 (1938), 341–350.Google Scholar

  • [30]

    R. Gorenflo, Y. Luchko and M. Stojanovic, Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density, Fract. Calc. Appl. Anal. 16 (2013), 297–316.Web of ScienceGoogle Scholar

  • [31]

    F. Mainardi, G. Pagnini, A. Mura and R. Gorenflo, Time-fractional diffusion of distributed order, J. Vib. Control. 14 (2008), 1267–1290.CrossrefWeb of ScienceGoogle Scholar

  • [32]

    S. Kazem, S. Abbasbandy and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model. 37 (2013), 5498–5510.CrossrefWeb of ScienceGoogle Scholar

  • [33]

    M. Zayernouri and G. E. Karniadakis, Fractional Sturm-Liouville eigen-problems: theory and numerical approximations, J. Comput. Phys. 47 (2013), 2108–2131.Google Scholar

  • [34]

    H. Khosravian-Arab, M. Dehghan and M. R. Eslahchi, Fractional Sturm-Liouville boundary value problems in unbounded domains: theory and applications, J. Comput. Phys. 229 (2015), 526–560.Web of ScienceGoogle Scholar

  • [35]

    S. Chen, J. Shen and L. L. Wang, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comp. 85 (2016), 1603–1638.Google Scholar

  • [36]

    M. A. Zaky, E. H. Doha and J. A. Tenreiro Machado, A spectral framework for fractional variational problems based on fractional Jacobi functions, Appl. Numer. Math. 132 (2018), 51–72.CrossrefWeb of ScienceGoogle Scholar

  • [37]

    M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy and D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys. 67 (2015), 773–791.Google Scholar

  • [38]

    E. H. Doha, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J. Phys. A Math. Gen. 37 (2004), 657–675.CrossrefGoogle Scholar

  • [39]

    E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy and R. A. V. Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations, J. Comput. Phys. 26 (2014), 244–255.Google Scholar

  • [40]

    A. H. Bhrawy and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations, J. Comput. Phys. 294 (2015), 462–483.CrossrefGoogle Scholar

  • [41]

    M. A. Zaky, E. H. Doha and J. A. Tenreiro Machado, A spectral numerical method for solving distributed-order fractional initial value problems, J. Comput. Nonlinear Dynam. 13 (2018), doi: .CrossrefGoogle Scholar

  • [42]

    E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy and R. A. V. Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations, J. Comput. Phys. 26 (2014), 244–255.Google Scholar

  • [43]

    A. H. Bhrawy and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations, J. Comput. Phys. 294 (2015), 462–483.CrossrefGoogle Scholar

  • [44]

    G-H. Gao, H-W. Sun and Z-Z. Sun, Some high-order difference schemes for the distributed-order differential equations, J. Comput. Phys. 298 (2015), 337–359.Web of ScienceCrossrefGoogle Scholar

  • [45]

    G-H. Gao and Z-Z. Sun, Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations, Comput. Math. Appl. 69 (2015), 926–948.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-04-28

Accepted: 2018-10-05

Published Online: 2018-10-23

Published in Print: 2018-12-19


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 19, Issue 7-8, Pages 781–792, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2018-0111.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in