Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Angheluta-Bauer, Luiza / Chen, Xi / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi / Yang, Xu


IMPACT FACTOR 2018: 1.033
5-year IMPACT FACTOR: 1.106

CiteScore 2018: 1.11

SCImago Journal Rank (SJR) 2018: 0.288
Source Normalized Impact per Paper (SNIP) 2018: 0.510

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 20, Issue 2

Issues

Dynamic Analysis of a Composite Structure under Random Excitation Based on the Spectral Element Method

M. R. MachadoORCID iD: https://orcid.org/0000-0002-7488-7201 / L. Khalij / A. T. Fabro
Published Online: 2019-01-24 | DOI: https://doi.org/10.1515/ijnsns-2018-0050

Abstract

The application of the composite materials in the aeronautical and aerospace industries has been increasing over the last several decades. Compared to conventional metallic materials, they present better strength to weight and stiffness to weight ratio. However, they can also present a high level of uncertainty, mainly associated with the manufacturing processes. Besides the uncertainty in the composite material parameters, which can play a role in the structural dynamic response, randomness can also be associated with boundary condition and external excitation sources. This paper treats the dynamic analysis of a composite beam under random excitation and uncertainties in the boundary condition. The beam is modelled by the spectral element method, a wave propagation technique. Some numerical examples are used to study the influence of random source on the dynamic behaviour of the composite structure.

Keywords: spectral element; random excitation; composite structure; dynamic analysis

References

  • [1]

    A. Papoulis and S. U. Pillai, Probability, random variables and stochastic processes, McGraw-Hill, Boston, 2002.Google Scholar

  • [2]

    J. Li and J. Chen, Structural dynamics and probabilistic analyses for engineers, John Wiley & Sons, 2009.Google Scholar

  • [3]

    G. Maymon, Stochastic dynamics of structures, Butterworth-Heinemann, Oxford, 2008.Google Scholar

  • [4]

    D. E. Newland, An introduction to random vibrations, spectral & wavelet analysis, Dover Publications, New York, 2005.Google Scholar

  • [5]

    J. F. Doyle, A spectrally formulated finite elements for longitudinal wave propagation, J. Anal. Exp. Modal Anal. 3 (1988), 1–5.Google Scholar

  • [6]

    J. F. Doyle, Wave propagation in structures : spectral analysis using fast discrete Fourier transforms, second ed. Mechanical engineering. Springer-Verlag New York, Inc., New York, 1997.Google Scholar

  • [7]

    U. Lee, Spectral element method in structural dynamics, Inha University Press, 2004.Google Scholar

  • [8]

    U. Lee and J. Kim, Determination of nonideal beam boundary conditions: a spectral element approach, AIAA J. 38 (2000), 309–316. doi.org/10.2514/2.958.Google Scholar

  • [9]

    J. F. Doyle, Wave propagation in structures, Springer Verlag, New York, 1989.Google Scholar

  • [10]

    J. Choi and D. Inman, Spectrally formulated modeling of a cable-harnessed structure, J. Sound Vibr. 333(14) (2014), 3286–3304.Web of ScienceCrossrefGoogle Scholar

  • [11]

    X. Liu and J. R. Banerjee, A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems, Mech. Syst. Sig. Process. 87 (2017), 136–160.CrossrefGoogle Scholar

  • [12]

    A. Pagani, E. Carrera, M. Boscolo and J. R. Banerjee, Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions, Compos. Struct. 110 (2014), 305–316.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    S. Gopalakrishnan, Wave propagation in materials and structures, CRC Press Taylor & Francis Group, New York, 2016.Google Scholar

  • [14]

    S. Gopalakrishnan, A. Chakraborty and D. R. Mahapatra, Spectral finite element method, Springer Verlag, New York, 2007.Google Scholar

  • [15]

    M. Palacz, M. Krawczuk and W. Ostachowicz, The spectral finite element model for analysis of flexural-shear coupled wave propagation. part 1 laminated multilayer composite beam, Comput. Struct. 68 (2005), 37–44.Google Scholar

  • [16]

    S. R. SA and J. Doyle, A spectral element approach to wave motion in layered solids, J. Vibr. Acoust. 114 (1992), 569–577.CrossrefGoogle Scholar

  • [17]

    U. Lee, Dynamic characterization of the joints in a beam structure by using spectral element method, Shock Vibr. 8(6) (2000), 357–366.Google Scholar

  • [18]

    M. R. Machado, A. Appert and L. Khalij, Dynamic analysis of a fatigue specimen subjected to a random base excitation via spectral element method, in: Proceedings of the joint ICVRAM ISUMA uncertainties conference, 2018.Google Scholar

  • [19]

    J. N. Kapur and H. K. Kesavan, Entropy optimization principles with applications, Academic Press, Boston, 1992.Google Scholar

  • [20]

    C. Soize, Random matrix theory and non-parametric model of random uncertainties in vibration analysis, J. Sound Vibr. 263 (2003), 893–916.CrossrefGoogle Scholar

  • [21]

    C. Soize, Uncertainty quantification – an accelerated course with advanced applications in computational engineering, 1st ed. Interdisciplinary Applied Mathematics. Elsevier, 2017.Google Scholar

  • [22]

    R. Calfisch, Monte Carlo and quasi mone carlo methods, Acta Numer. 1 (1998), 2–49.Google Scholar

  • [23]

    H. Pradlwarter and G. Schuüller, On advanced Monte Carlo simulation procedures in stochastic structural dynamics, Int. J. Non-Linear Mech. (Third International Stochastic Structural Dynamics Conference) 32(4) (1997), 735–744.Google Scholar

  • [24]

    R. Rubinstein and D. Kroese, Simulation and the Monte Carlo method, John Wiley & Sons, USA, 2008.Google Scholar

  • [25]

    I. M. Sobol’, A primer for the Monte Carlo method, CRC-Press Taylor & Francis Group, Florida, 1994.Google Scholar

  • [26]

    D. Gay, Materials design and applications, CRC-Press Taylor & Francis Group, Florida, 2015.Google Scholar

  • [27]

    J. N. Reddy, Mechanics of laminated composite plates and shells - theory and analysis, Second Edition, CRC-Press Taylor & Francis Group, Florida, 2003.Google Scholar

  • [28]

    M. Palacz, M. Krawczuk and W. Ostachowicz, The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 2: Delaminated multilayer composite beam, Compos. Struct. 68 (2005), 45–51.Google Scholar

  • [29]

    E. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (4) (1957), 1620–1630.Google Scholar

  • [30]

    E. Jaynes, Information theory and statistical mechanics II, Phys. Rev. 108 (1957), 171–190.CrossrefGoogle Scholar

  • [31]

    C. E. Shannon, A mathematical theory of communication, Bell Syst Tech. J. 27 (1948), 379–423 and 623–659.Google Scholar

  • [32]

    J. N. Kapur and H. K. Kesavan, Entropy optimization principles with applications, Academic Press, Inc., USA, 1992.Google Scholar

About the article

Received: 2018-03-01

Accepted: 2018-12-16

Published Online: 2019-01-24

Published in Print: 2019-04-26


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 20, Issue 2, Pages 179–190, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2018-0050.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in