Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Journal of Nonlinear Sciences and Numerical Simulation

Editor-in-Chief: Birnir, Björn

Editorial Board: Angheluta-Bauer, Luiza / Chen, Xi / Chou, Tom / Grauer, Rainer / Marzocchella, Antonio / Rangarajan, Govindan / Trivisa, Konstantina / Weikard, Rudi / Yang, Xu


IMPACT FACTOR 2017: 1.162

CiteScore 2017: 1.41

SCImago Journal Rank (SJR) 2017: 0.382
Source Normalized Impact per Paper (SNIP) 2017: 0.636

Mathematical Citation Quotient (MCQ) 2017: 0.12

Online
ISSN
2191-0294
See all formats and pricing
More options …
Volume 20, Issue 2

Issues

Numerical Study of the Dynamics of Particles Motion with Different Sizes from Coal-Based Thermal Power Plant

Alibek Issakhov
  • Corresponding author
  • al-Farabi Kazakh National University, Almaty, Republic of Kazakhstan
  • Kazakh British Technical University, Almaty, Republic of Kazakhstan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruslan Bulgakov / Yeldos Zhandaulet
Published Online: 2019-01-26 | DOI: https://doi.org/10.1515/ijnsns-2018-0182

Abstract

In this paper, the propagation of particles with different sizes from a coal-based thermal power plant was investigated. It was found that the deterioration of the environment is due to the release of a large amount of SOx, NOx and the volatile particles of Suspended Particulate Matter and Respirable Suspended Particles matter, which cause human and animal diseases. This paper presents the numerical simulation results of air pollution by particles which having different sizes from thermal power plants in real sizes using a 3D model. For the adequacy of the mathematical model, a test problem was solved using different turbulent models. To assess the applicability of the mathematical model, the numerical algorithm and the choice of the optimal turbulent model, experimental data and numerical results of other authors were used. The obtained numerical simulation results are in good agreement with the experimental results and the numerical results of other authors. And to obtain more accurate numerical results for the experimental data for turbulent models (kε, kω), there were certain corresponding boundary conditions for kinetic energy. Also, profiles of all flow characteristics were compared with and without particles and some effects of the particle on the flow were identified.

Keywords: large eddy simulation (LES); reynolds averaged Navier-Stokes (RANS); detached eddy simulation (DES); jet in crossflow; particle dispersion

PACS: 47.11.Df; 47.27.E-; 47.27.ep; 47.27.wb; 47.32.C-; 45.50.-j

References

  • [1]

    G. Flermoneca, Report of quality of air, (2013), 15.Google Scholar

  • [2]

    R. Wilson and J. Spengler, Particles in our air, Harvard University Press, Cambridge, MA. 265, 1996.Google Scholar

  • [3]

    V. Vasistha, Effects of pollutants produced by thermal power plant on environment: A review, Int. J. Mech. Eng. Rob. Res. 3 (2) April (2014), 202–207.Google Scholar

  • [4]

    W. K. Pokale, Effects of thermal power plant on environment, Sci. Res. Chem.Commun. 2 (3) (2012), 212–215.Google Scholar

  • [5]

    S. Balachandar and J. K. Eaton, Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech. 42 (2010), 111–133.CrossrefGoogle Scholar

  • [6]

    R. Monchaux, M. Bourgoin and A. Cartellier, Analyzing preferential concentration and clustering of inertial particles in turbulence, Int. J. Multiph. Flow. 40 (2012), 1–18.CrossrefGoogle Scholar

  • [7]

    S. Goto and J. C. Vassilicos, Sweep-stick mechanism of heavy particle clustering in fluid turbulence, Phys. Rev. Lett. 100 (5) (2008), 054503.CrossrefGoogle Scholar

  • [8]

    A. M. Ahmed and S. Elghobashi, Direct numerical simulation of particle dispersion in homogeneous turbulent shear flows, Phys. Fluids. 13 (11) (2001), 3346–3364.CrossrefGoogle Scholar

  • [9]

    X. Liu, C. Ji, X. Xu, D. Xu and J. J. Williams, Distribution characteristics of inertial sediment particles in the turbulent boundary layer of an open channel flow determined using Voronoï analysis, Int. J. Sedim. Res. 32 (3) (2017), 401–409.CrossrefGoogle Scholar

  • [10]

    C. Marchioli, A. Soldati, J. G. M. Kuerten, B. Arcen, A. Taniere, G. Goldensoph, K. D. Squires, M. F. Cargnelutti and L. M. Portela, Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test, Int. J. Multiph. Flow. 34 (9) (2008), 879–893.CrossrefGoogle Scholar

  • [11]

    D. W. Rouson and J. K. Eaton, On the preferential concentration of solid particles in turbulent channel flow, J. Fluid Mech. 428 (2001), 149–169.CrossrefGoogle Scholar

  • [12]

    C. Marchioli, A. Giusti, M. V. Salvetti and A. Soldati, Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow, Int. J. Multiphase Flow. 29 (6) (2003), 1017–1038.CrossrefGoogle Scholar

  • [13]

    A. W. Vreman, Turbulence characteristics of particle-laden pipe flow, J. Fluid Mech. 584 (2007), 235–279.CrossrefGoogle Scholar

  • [14]

    C. Marchioli, M. Picciotto and A. Soldati, Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow, Int. J. Multiph. Flow. 33 (3) (2007), 227–251.CrossrefGoogle Scholar

  • [15]

    V. Armenio and V. Fiorotto, The importance of the forces acting on particles in turbulent flows, Phys. Fluids. 13 (8) (2001), 2437–2440.CrossrefGoogle Scholar

  • [16]

    J. N. Chung and T. R. Troutt, Simulation of particle dispersion in an axisymmetric jet, J. Fluid Mech. 186 (1988), 199–222.CrossrefGoogle Scholar

  • [17]

    E. K. Longmire and J. K. Eaton, Structure of a particle-laden round jet, J. Fluid Mech. 236 (1992), 217–257.CrossrefGoogle Scholar

  • [18]

    R. J. Margason (1993) Fifty years of jet in crossflow research. In AGARD Symp. on a Jet in Cross Flow, Winchester, UK. AGARD CP 534.Google Scholar

  • [19]

    K. Kalita, A. Dewan and A. K. Dass, Prediction of turbulent plane jet in crossflow, Numer. Heat Transfer A. 41 (2002), 1–12.Google Scholar

  • [20]

    R. M. Kelso, T. T. Lim and A. E. Perry, An experimental study of round jets in cross-flow, J. Fluid Mech. 306 (1996), 111–144.CrossrefGoogle Scholar

  • [21]

    A. R. Karagozian, The jet in crossflow, Phys. Fluids. 26 (2014)101303.CrossrefGoogle Scholar

  • [22]

    R. M. Keimasi and M. Taeibi-Rahni, Numerical simulation of jets in a crossflow using different turbulence models, Aiaa J. 12 (39) December (2001), 2268–2277.Google Scholar

  • [23]

    A. Hoda and S. Acharya, Predictions of a film coolant jet in crossflow with different turbulence models, ASME J. Turbomach. 122 (2000), 558–569.CrossrefGoogle Scholar

  • [24]

    J. W. Shan and P. E. Dimotakis, Reynolds-number effects and anisotropy in transverse-jet mixing, J. Fluid. Mech. 566 (2006), 47–96.CrossrefGoogle Scholar

  • [25]

    L. K. Su and M. G. Mungal, Simultaneous measurement of scalar and velocity field evolution in turbulent crossflowing jets, J. Fluid Mech. 513 (2004), 1–45.CrossrefGoogle Scholar

  • [26]

    S. Muppidi and K. Mahesh, Study of trajectories of jets in crossflow using direct numerical simulations, J. Fluid. Mech. 530 (2005), 81–100.CrossrefGoogle Scholar

  • [27]

    S. Muppidi and K. Mahesh, Direct numerical simulation of passive scalar transport in transverse jet, J. Fluid Mech. 598 (2008), 335–360.Google Scholar

  • [28]

    K. Mahesh, The interaction of jets with crossflow, Ann. Rev. Fluid Mech. 45 (2013), 379–407.CrossrefGoogle Scholar

  • [29]

    E. F. Hasselbrink and M. G. Mungal, Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets, J. Fluid Mech. 443 (2001), 1–25.Google Scholar

  • [30]

    G. Chochua, W. Shyy, S. Thakur, A. Brankovic, K. Lienau, L. Porter and D. Lischinsky, A computational and experimental investigation of turbulent jet and crossflow interaction, Numer. Heat Transfer A. 38 (2000), 557–572.CrossrefGoogle Scholar

  • [31]

    S. Acharya, M. Tyagi and A. Hoda, Flow and heat transfer predictions for film cooling, heat transfer in gas turbine systems, Ann. N.Y. Acad. Sci. 934 (2001), 110–125.Google Scholar

  • [32]

    X. Chai, P. S. Iyer and K. Mahesh, Numerical study of high speed jets in crossflow, J. Fluid Mech. 785 (2015), 152–188.CrossrefGoogle Scholar

  • [33]

    J. U. Schluter and T. Schonfeld, LES of jets in crossflow and its application to a gas turbine burner, Flow Turbul. Combust. 65 (2000), 177–203.CrossrefGoogle Scholar

  • [34]

    F. R. Menter and M. Kuntz, Development and application of a zonal des turbulence model for CFX-5, CFX-Validation Report, CFX-VAL17/0503, (2003).Google Scholar

  • [35]

    A. Issakhov, Y. Zhandaulet and A. Nogaeva, Numerical simulation of dam break flow for various forms of the obstacle by VOF method, Int. J. Multiphase Flow. (2018). doi: .CrossrefGoogle Scholar

  • [36]

    A. Issakhov and G. Mussakulova, Numerical study for forecasting the dam break flooding flows impacts on different shaped obstacles, Int. J. Mech. 11 (2017c), 273–280.Google Scholar

  • [37]

    A. Issakhov Numerical modelling of distribution the discharged heat water from thermal power plant on the aquatic environment. AIP Conference Proceedings 1738, 480025 (2016b); doi: .CrossrefGoogle Scholar

  • [38]

    A. Issakhov, Modeling of synthetic turbulence generation in boundary layer by using Zonal RANS/LES method, Int. J. Nonlinear Sci. Numer. Simul. 15 (2) (2014), 115–120. doi: .CrossrefGoogle Scholar

  • [39]

    A. Issakhov, Numerical study of the discharged heat water effect on the aquatic environment from thermal power plant by using two water discharged pipes, Int. J. Nonlinear Sci. Numer. Simul. 18 (6) (2017a), 469–483.Google Scholar

  • [40]

    A. Issakhov Numerical modelling of the thermal effects on the aquatic environment from the thermal power plant by using two water discharge pipes. AIP Conference Proceedings 1863, 560050 (2017b); doi: .CrossrefGoogle Scholar

  • [41]

    A. Issakhov, Mathematical modeling of the discharged heat water effect on the aquatic environment from thermal power plant under various operational capacities, Appl. Math. Model. 40 (2) (2016a), 1082–1096.CrossrefGoogle Scholar

  • [42]

    A. Issakhov, Numerical modeling of the effect of discharged hot water on the aquatic environment from a thermal power plant, Int. J. Energy Clean Environ. 16 (1–4) (2015b), 23–28.CrossrefGoogle Scholar

  • [43]

    A. Issakhov, Mathematical modeling of the discharged heat water effect on the aquatic environment from thermal power plant, Int. J. Nonlinear Sci. Numer. Simul. 16 (5) (2015a), 229–238. doi: .CrossrefGoogle Scholar

  • [44]

    P. Ajersch, J. M. Zhou, S. Ketler, M. Salcudean and I. S. Gartshore, Multiple jets in a cross flow: Detailed measurements and numerical simulations, international gas turbine and aeroengine congress and exposition, ASME Paper 95-GT-9, Houston, TX, June (1995), pp. 1–16.Google Scholar

  • [45]

    H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics—The finite volume method, Logman, Malaysia, reprinted 1996, Chaps. 5–7, .Google Scholar

  • [46]

    F. R. Menter, Two-equation Eddy-viscosity turbulence models for engineering applications, Aiaa J. 8 (32) (1994), 1598–1605.Google Scholar

  • [47]

    J. Uthuppan and S. K. Aggarwal, Particle dispersion in a transitional axisymmetric jet: A numerical simulation, Aiaa J. 32 (1994), 10.Google Scholar

  • [48]

    F. Sbrizzai, R. Verzicco, M. F. Pidria and A. Soldati, Mechanisms for selective radial dispersion of microparticles in the transitional region of a confined turbulent round jet, Int. J. Multiphase Flow. 30 (2004), 1389–1417.CrossrefGoogle Scholar

  • [49]

    K. D. Squires and J. K. Eaton, Preferential concentrations of particles by turbulence, Phys. Fluids A. 3 (1990), 1169–1178.Google Scholar

  • [50]

    S. Muppidi and K. Mahesh, Direct numerical simulation of round turbulent jets in crossflow, J. Fluid. Mech. 574 (2007), 59–84.CrossrefGoogle Scholar

  • [51]

    A. Issakhov Mathematical modelling of the thermal process in the aquatic environment with considering the hydrometeorological condition at the reservoir-cooler by using parallel technologies. Sustaining Power Resources through Energy Optimization and Engineering. p. 227–243, 2016c.Google Scholar

About the article

Received: 2018-06-25

Accepted: 2019-01-12

Published Online: 2019-01-26

Published in Print: 2019-04-26


Citation Information: International Journal of Nonlinear Sciences and Numerical Simulation, Volume 20, Issue 2, Pages 223–241, ISSN (Online) 2191-0294, ISSN (Print) 1565-1339, DOI: https://doi.org/10.1515/ijnsns-2018-0182.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in