Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Inflammasome

Editor-in-Chief: Pelegrin, Pablo

Ed. by Lopez-Castejón, Gloria

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-102X
See all formats and pricing
More options …

Inflammation as a target of minocycline: special interest in the regulation of inflammasome signaling

Anu Kauppinen
  • Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
  • Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
/ Antero Salminen
  • Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
  • Department of Neurology, Kuopio University Hospital,P.O. Box 1777, FIN-70211 Kuopio, Finland
/ Kai Kaarniranta
  • Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
  • Department of Ophthalmology, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
Published Online: 2013-11-29 | DOI: https://doi.org/10.2478/infl-2013-0002

Abstract

Minocycline is a wide-spectrum antibiotic derived from tetracycline. In addition to its anti-microbial activity, minocycline is known to possess several immunomodulatory and neuroprotective properties. Fewer severe side effects and more efficient tissue penetration make minocycline better than its parent tetracycline. Doxycycline competes with minocycline in improved biological half-life but minocycline becomes more rapidly absorbed in tissues than doxycycline. Due to its high lipid solubility, minocycline also crosses the blood-brain barrier easily, which increases its relevance in the treatment of diseases beyond the barriers. Inflammasomes are intracellular protein complexes which become primed via NF-kB and MAPK pathways, and activated by various PAMPs and DAMPs. In this article, we hypothese about the capability of minocycline to regulate inflammasomes as part of its anti-inflammatory activity. The hypothesis is based on the ability of minocycline to regulate signals essential to both the priming and the activation of inflammasome signaling

Keywords: Minocycline; Inflammation; Oxidative stress; NLRP3; Inflammasome; NF-kB; MAPK

References

  • [1] Roberts M.C., Tetracycline therapy: Update, Clin. Infect. Dis., 2003, 36, 462-467CrossrefGoogle Scholar

  • [2] Chopra I., Roberts M., Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 2001, 65, 232-60CrossrefGoogle Scholar

  • [3] Brogden R.N., Speight T.M., Avery G.S., Minocycline: A review of its antibacterial and pharmacokinetic properties and therapeutic use, Drugs, 1975, 9, 251-291CrossrefGoogle Scholar

  • [4] Macdonald H., Kelly R.G., Allen E.S., Noble J.F., Kanegis L.A., Pharmacokinetic studies on minocycline in man, Clin. Pharmacol. Ther., 1973, 14, 852-861Google Scholar

  • [5] Carney S, Butcher R.A., Dawborn J.K., Pattison G., Minocycline excretion and distribution in relation to renal function in man, Clin. Exp. Pharmacol. Physiol., 1974, 1, 299-308CrossrefGoogle Scholar

  • [6] Zabad R.K., Metz L.M., Todoruk T.R., Zhang Y., Mitchell J.R., Yeung M, et al., The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: A pilot study, Mult. Scler., 2007, 13, 517-526Google Scholar

  • [7] Amin A.R., Attur M.G., Thakker G.D., Patel P.D., Vyas P.R., Patel R.N., et al., A novel mechanism of action of tetracyclines: Effects on nitric oxide synthases, Proc. Natl. Acad. Sci. USA, 1996, 93, 14014-14019CrossrefGoogle Scholar

  • [8] Yrjanheikki J., Keinanen R., Pellikka M., Hokfelt T., Koistinaho J., Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia, Proc. Natl. Acad. Sci. USA, 1998, 95, 15769-15774CrossrefGoogle Scholar

  • [9] Yrjanheikki J., Tikka T., Keinanen R., Goldsteins G., Chan P.H., Koistinaho J, A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window, Proc. Natl. Acad. Sci. USA, 1999, 96, 13496-13500CrossrefGoogle Scholar

  • [10] Watanabe K., Kawaguchi M., Kitagawa K., Inoue S., Konishi N., Furuya H., Evaluation of the neuroprotective effect of minocycline in a rabbit spinal cord ischemia model, J. Cardiothorac. Vasc. Anesth., 2012, 26, 1034-1038CrossrefGoogle Scholar

  • [11] Wu D.C., Jackson-Lewis V., Vila M., Tieu K., Teismann P., Vadseth C., et al., Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine mouse model of parkinson disease, J. Neurosci., 2002, 22, 1763-1771Google Scholar

  • [12] Zhu S., Stavrovskaya I.G., Drozda M., Kim B.Y., Ona V., Li M., et al., Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice, Nature, 2002, 417, 74-78Google Scholar

  • [13] Chen M., Ona V.O., Li M., Ferrante R.J., Fink K.B., Zhu S., et al., Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of huntington disease, Nat. Med., 2000, 6, 797-801Google Scholar

  • [14] Popovic N., Schubart A., Goetz B.D., Zhang S.C., Linington C., Duncan I.D., Inhibition of autoimmune encephalomyelitis by a tetracycline, Ann. Neurol., 2002, 51, 215-223CrossrefGoogle Scholar

  • [15] Lampl Y., Boaz M., Gilad R., Lorberboym M., Dabby R., Rapoport A., et al., Minocycline treatment in acute stroke, An open-label, evaluator-blinded study, Neurology, 2007, 69, 1404-1410CrossrefGoogle Scholar

  • [16] Arvin K.L., Han B.H., Du Y., Lin S.Z., Paul S.M., Holtzman D.M., Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury, Ann. Neurol., 2002, 52, 54-61CrossrefGoogle Scholar

  • [17] Metz L.M., Zhang Y., Yeung M., Patry D.G., Bell R.B., Stoian C.A., et al., Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis, Ann. Neurol., 2004, 55, 756CrossrefGoogle Scholar

  • [18] Zhang Y., Metz L.M., Yong V.W., Bell R.B., Yeung M., Patry D.G., et al., Pilot study of minocycline in relapsing remitting multiple sclerosis, Can. J. Neurol. Sci., 2008, 35, 185-191CrossrefGoogle Scholar

  • [19] Rifkin B.R., Vernillo A.T., Golub L.M., Ramamurthy N.S., Modulation of bone resorption by tetracyclines, Ann. N Y Acad. Sci., 1994, 732, 165-180Google Scholar

  • [20] Smith C.J., Sayles H., Mikuls T.R., Michaud K., Minocycline and doxycycline therapy in community patients with rheumatoid arthritis: Prescribing patterns, patient-level determinants of use, and patient-reported side effects, Arthritis. Res. Ther., 2011, 13, R168CrossrefGoogle Scholar

  • [21] Kinugawa S., Koide M., Kobayashi Y., Mizoguchi T., Ninomiya T., Muto A., et al., Tetracyclines convert the osteoclastic-differentiation pathway of progenitor cells to produce dendritic cell-like cells, J. Immunol., 2012, 188, 1772-1781Google Scholar

  • [22] Lee H., Min K., Kim E.K., Kim T.I., Minocycline controls clinical outcomes and inflammatory cytokines in moderate and severe meibomian gland dysfunction, Am. J. Ophthalmol., 2012, 154, 949-957.e1Google Scholar

  • [23] Cukras C.A., Petrou P., Chew E.Y., Meyerle C.B., Wong W.T., Oral minocycline for the treatment of diabetic macular edema (DME): Results of a phase I/II clinical study, Invest. Ophthalmol. Vis. Sci., 2012, 53, 3865-3874CrossrefGoogle Scholar

  • [24] Martinon F., Burns K., Tschopp J., The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta, Mol. Cell., 2002, 10, 417-426CrossrefGoogle Scholar

  • [25] Martinon F., Mayor A., Tschopp J., The inflammasomes: Guardians of the body, Annu. Rev. Immunol., 2009, 27, 229-265CrossrefGoogle Scholar

  • [26] Bergsbaken T., Fink S.L., Cookson B.T., Pyroptosis: Host cell death and inflammation, Nat. Rev. Microbiol., 2009, 7, 99-109CrossrefGoogle Scholar

  • [27] Gross O., Thomas C.J., Guarda G., Tschopp J., The inflammasome: An integrated view, Immunol. Rev., 2011, 243, 136-151CrossrefGoogle Scholar

  • [28] Davis B.K., Wen H., Ting J.P., The inflammasome NLRs in immunity, inflammation, and associated diseases, Annu. Rev. Immunol., 2011, 29, 707-735CrossrefGoogle Scholar

  • [29] Kerur N., Veettil M.V., Sharma-Walia N., Bottero V., Sadagopan S, Otageri P., et al., IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to kaposi sarcoma-associated herpesvirus infection, Cell Host Microbe, 2011, 9, 363-375CrossrefGoogle Scholar

  • [30] Martinon F. Detection of immune danger signals by NALP3, J. Leukoc. Biol., 2008, 83, 507-511Google Scholar

  • [31] Lamkanfi M., Sarkar A., Vande Walle L., Vitari A.C., Amer A.O., Wewers M.D., et al., Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia, J. Immunol., 2010, 185, 4385-4392Google Scholar

  • [32] He Q., You H., Li X.M., Liu T.H., Wang P., Wang B.E., HMGB1 promotes the synthesis of pro-IL-1beta and pro-IL-18 by activation of p38 MAPK and NF-kappaB through receptors for advanced glycation end-products in macrophages, Asian. Pac. J. Cancer. Prev., 2012, 13, 1365-1370 Google Scholar

  • [33] Kummer J.A., Broekhuizen R., Everett H., Agostini L., Kuijk L., Martinon F., et al., Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response, J. Histochem. Cytochem., 2007, 55, 443-452Google Scholar

  • [34] Chakraborty S., Kaushik D.K., Gupta M., Basu A., Inflammasome signaling at the heart of central nervous system pathology, J. Neurosci. Res., 2010, 88, 1615-1631Google Scholar

  • [35] Faustin B., Lartigue L., Bruey J.M., Luciano F., Sergienko E., Bailly-Maitre B., et al., Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation, Mol. Cell., 2007, 25, 713-724CrossrefGoogle Scholar

  • [36] Boyden E.D., Dietrich W.F., Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin, Nat. Genet., 2006, 38, 240-244Google Scholar

  • [37] Witola W.H., Mui E., Hargrave A., Liu S., Hypolite M., Montpetit A., et al., NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of toxoplasma gondii-infected monocytic cells, Infect. Immun., 2011, 79, 756-766Google Scholar

  • [38] Miao E.A., Mao D.P., Yudkovsky N., Bonneau R., Lorang C.G., Warren S.E., et al., Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proc. Natl. Acad. Sci. USA, 2010, 107, 3076-3080CrossrefGoogle Scholar

  • [39] Fernandes-Alnemri T., Yu J.W., Datta P., Wu J., Alnemri E.S., AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA, Nature, 2009, 458, 509-513Google Scholar

  • [40] Poeck H., Bscheider M., Gross O., Finger K., Roth S., Rebsamen M., et al., Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production, Nat. Immunol., 2010, 11, 63-69Google Scholar

  • [41] Mariathasan S., Weiss D.S., Newton K., McBride J., O’Rourke K., Roose-Girma M., et al., Cryopyrin activates the inflammasome in response to toxins and ATP, Nature, 2006, 440, 228-232Google Scholar

  • [42] Yamasaki K., Muto J., Taylor K.R., Cogen A.L., Audish D., Bertin J., et al., NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury, J. Biol. Chem., 2009, 284, 12762-12771Google Scholar

  • [43] Halle A., Hornung V., Petzold G.C., Stewart C.R., Monks B.G., Reinheckel T., et al., The NALP3 inflammasome is involved in the innate immune response to amyloid-beta, Nat. Immunol., 2008, 9, 857-865CrossrefGoogle Scholar

  • [44] Shimada K., Crother T.R., Karlin J., Dagvadorj J., Chiba N., Chen S., et al., Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis, Immunity, 2012, 36, 401-414CrossrefGoogle Scholar

  • [45] Martinon F., Petrilli V., Mayor A., Tardivel A., Tschopp J., Gout-associated uric acid crystals activate the NALP3 inflammasome, Nature, 2006, 440, 237-241Google Scholar

  • [46] Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J., Thioredoxin-interacting protein links oxidative stress to inflammasome activation, Nat. Immunol., 2010, 11, 136-140 CrossrefGoogle Scholar

  • [47] Muruve D.A., Petrilli V., Zaiss A.K., White L.R., Clark S.A., Ross P.J., et al., The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response, Nature, 2008, 452, 103-107Google Scholar

  • [48] Kanneganti T.D., Ozoren N., Body-Malapel M., Amer A., Park J.H., Franchi L., et al., Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3, Nature, 2006, 440, 233-236Google Scholar

  • [49] Watanabe H., Gaide O., Petrilli V., Martinon F., Contassot E., Roques S., et al., Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity, J. Invest. Dermatol., 2007, 127, 1956-1963CrossrefGoogle Scholar

  • [50] Feldmeyer L., Keller M., Niklaus G., Hohl D., Werner S., Beer H.D., The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes, Curr. Biol., 2007, 17, 1140-1145CrossrefGoogle Scholar

  • [51] Hornung V., Bauernfeind F., Halle A., Samstad E.O., Kono H., Rock K.L., et al., Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization, Nat. Immunol., 2008, 9, 847-856CrossrefGoogle Scholar

  • [52] Dostert C., Petrilli V., Van Bruggen R., Steele C., Mossman B.T., Tschopp J., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica, Science, 2008, 320, 674-677Google Scholar

  • [53] Eisenbarth S.C., Colegio O.R., O’Connor W., Sutterwala F.S., Flavell R.A., Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants, Nature, 2008, 453, 1122-1126Google Scholar

  • [54] Yazdi A.S., Guarda G., Riteau N., Drexler S.K., Tardivel A., Couillin I., et al., Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta, Proc. Natl. Acad. Sci. USA, 2010, 107, 19449-19454CrossrefGoogle Scholar

  • [55] Dostert C., Guarda G., Romero J.F., Menu P., Gross O., Tardivel A., et al., Malarial hemozoin is a Nalp3 inflammasome activating danger signal, PLoS One, 2009, 4, e6510Google Scholar

  • [56] Bryant C., Fitzgerald K.A., Molecular mechanisms involved in inflammasome activation, Trends. Cell. Biol., 2009, 19, 455-464CrossrefGoogle Scholar

  • [57] Noble W., Garwood C.J., Hanger D.P., Minocycline as a potential therapeutic agent in neurodegenerative disorders characterised by protein misfolding, Prion, 2009, 3, 78-83CrossrefGoogle Scholar

  • [58] Cassel S.L., Joly S., Sutterwala F.S., The NLRP3 inflammasome: A sensor of immune danger signals, Semin. Immunol., 2009, 21, 194-198CrossrefGoogle Scholar

  • [59] Schroder K., Tschopp J., The inflammasomes, Cell, 2010, 140, 821-832CrossrefGoogle Scholar

  • [60] Zhang H., Liu L., Yang Z., Pan J., Chen Z., Fang Q., et al., P2X7 receptor mediates activation of microglial cells in prostate of chemically irritated rats, Int. Braz. J. Urol., 2013, 39, 276-285Google Scholar

  • [61] Iwata M., Ota K.T., Duman R.S., The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses, Brain. Behav. Immun., 2013, 31, 105-114 CrossrefGoogle Scholar

  • [62] Pae C.U., Marks D.M., Han C., Patkar A.A., Does minocycline have antidepressant effect?, Biomed. Pharmacother., 2008, 62, 308-311CrossrefPubMedGoogle Scholar

  • [63] Petrilli V., Papin S., Dostert C., Mayor A., Martinon F., Tschopp J., Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration, Cell Death Differ., 2007, 14, 1583-1589Google Scholar

  • [64] Cruz C.M., Rinna A., Forman H.J., Ventura A.L., Persechini P.M., Ojcius D.M., ATP activates a reactive oxygen speciesdependent oxidative stress response and secretion of proinflammatory cytokines in macrophages, J. Biol. Chem., 2007, 282, 2871-2879Google Scholar

  • [65] Cassel S.L., Eisenbarth S.C., Iyer S.S., Sadler J.J., Colegio O.R., Tephly L.A., The Nalp3 inflammasome is essential for the development of silicosis, Proc. Natl. Acad. Sci. USA, 2008, 105, 9035-9040CrossrefGoogle Scholar

  • [66] Kauppinen A., Niskanen H., Suuronen T., Kinnunen K., Salminen A., Kaarniranta K., Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells-implications for age-related macular degeneration (AMD), Immunol. Lett., 2012, 147, 29-33Google Scholar

  • [67] Mayor A., Martinon F., De Smedt T., Petrilli V., Tschopp J., A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses, Nat. Immunol., 2007, 8, 497-503Google Scholar

  • [68] Lu B., Nakamura T., Inouye K., Li J., Tang Y., Lundback P., et al., Novel role of PKR in inflammasome activation and HMGB1 release, Nature, 2012, 488, 670-674Google Scholar

  • [69] Miyachi Y., Yoshioka A., Imamura S., Niwa Y., Effect of antibiotics on the generation of reactive oxygen species, J. Invest. Dermatol., 1986, 86, 449-453CrossrefGoogle Scholar

  • [70] Kraus R.L., Pasieczny R., Lariosa-Willingham K., Turner M.S., Jiang A., Trauger J.W., Antioxidant properties of minocycline: Neuroprotection in an oxidative stress assay and direct radicalscavenging activity, J. Neurochem., 2005, 94, 819-827CrossrefGoogle Scholar

  • [71] Kladna A., Michalska T., Berczynski P., Kruk I., Aboul-Enein H.Y., Evaluation of the antioxidant activity of tetracycline antibiotics in vitro, Luminescence, 2012, 27, 249-255CrossrefGoogle Scholar

  • [72] Lin S., Wei X., Xu Y., Yan C., Dodel R., Zhang Y., et al., Minocycline blocks 6-hydroxydopamine-induced neurotoxicity and free radical production in rat cerebellar granule neurons, Life Sci, 2003, 72, 1635-1641CrossrefGoogle Scholar

  • [73] Gieseler A., Schultze A.T., Kupsch K., Haroon M.F., Wolf G., Siemen D., et al., Inhibitory modulation of the mitochondrial permeability transition by minocycline, Biochem. Pharmacol., 2009, 77, 888-896CrossrefGoogle Scholar

  • [74] Kuang X., Scofield V.L., Yan M., Stoica G., Liu N., Wong P.K., Attenuation of oxidative stress, inflammation and apoptosis by minocycline prevents retrovirus-induced neurodegeneration in mice, Brain Res., 2009, 1286, 174-184Google Scholar

  • [75] Lee J., Giordano S., Zhang J., Autophagy, mitochondria and oxidative stress: Cross-talk and redox signaling, Biochem. J., 2012, 441, 523-540Google Scholar

  • [76] Parzych, K.R., Klionsky D., An overview of autophagy: Morphology, mechanism and regulation, Antioxid. Redox. Signal., in press, doi: 10.1089/ars.2013.5371, 2013CrossrefGoogle Scholar

  • [77] Choi A.M., Ryter S.W., Levine B., Autophagy in human health and disease, N. Engl. J. Med., 2013, 368, 651-662Google Scholar

  • [78] Klettner A., Kauppinen A., Blasiak J., Roider J., Salminen A., Kaarniranta K., Cellular and molecular mechanisms of agerelated macular degeneration: From impaired autophagy to neovascularization, Int. J. Biochem. Cell. Biol., 2013, 45, 1457-1467CrossrefGoogle Scholar

  • [79] Zhou R., Yazdi A.S., Menu P., Tschopp J., A role for mitochondria in NLRP3 inflammasome activation, Nature, 2011, 469, 221-225Google Scholar

  • [80] Nakahira K., Haspel J.A., Rathinam V.A., Lee S.J., Dolinay T., Lam H.C., et al., Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome, Nat. Immunol., 2011, 12, 222-230CrossrefGoogle Scholar

  • [81] McGuire K.A., Barlan A.U., Griffin T.M., Wiethoff C.M., Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species, J. Virol., 2011, 85, 10806-10813CrossrefGoogle Scholar

  • [82] Harris J., Hartman M., Roche C., Zeng S.G., O’Shea A., Sharp F.A., et al., Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation, J. Biol. Chem., 2011, 286, 9587-9597Google Scholar

  • [83] Shi C.S., Shenderov K., Huang N.N., Kabat J., Abu-Asab M., Fitzgerald K.A., et al., Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction, Nat. Immunol., 2012, 13, 255-263CrossrefGoogle Scholar

  • [84] Allam R., Darisipudi M.N., Rupanagudi K.V., Lichtnekert J., Tschopp J., Anders H.J., Cutting edge: Cyclic polypeptide and aminoglycoside antibiotics trigger IL-1beta secretion by activating the NLRP3 inflammasome, J. Immunol., 2011, 186, 2714-2718Google Scholar

  • [85] Sauter K.A., Wood L.J., Wong J., Iordanov M., Magun B.E., Doxorubicin and daunorubicin induce processing and release of interleukin-1beta through activation of the NLRP3 inflammasome, Cancer. Biol. Ther., 2011, 11, 1008-1016CrossrefGoogle Scholar

  • [86] Maier K., Merkler D., Gerber J., Taheri N., Kuhnert A.V., Williams S.K., Multiple neuroprotective mechanisms of minocycline in autoimmune CNS inflammation, Neurobiol. Dis. 2007, 25, 514-525CrossrefGoogle Scholar

  • [87] Tikka T.M., Koistinaho J.E., Minocycline provides neuroprotection against N-methyl-Daspartate neurotoxicity by inhibiting microglia, J. Immunol. 2001, 166, 7527-7533CrossrefGoogle Scholar

  • [88] Ianaro A, Ialenti A, Maffia P, Sautebin L, Rombola L, Carnuccio R, Iuvone T, D’Acquisto F, Di Rosa M. Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 2000; 292:156-163.Google Scholar

  • [89] Darisipudi M.N., Allam R., Rupanagudi K.V., Anders H.J., Polyene macrolide antifungal drugs trigger interleukin-1beta secretion by activating the NLRP3 inflammasome, PLoS One, 2011, 6, e19588.Google Scholar

  • [90] Aguzzi A., Barres B.A., Bennett M.L., Microglia: Scapegoat, saboteur, or something else?, Science, 2013, 339, 156-161 Google Scholar

  • [91] Liu H.S., Pan C.E., Liu Q.G., Yang W., Liu X.M., Effect of NF-kappaB and p38 MAPK in activated monocytes/ macrophages on pro-inflammatory cytokines of rats with acute pancreatitis, World J. Gastroenterol., 2003, 9, 2513-2518Google Scholar

  • [92] Nikodemova M., Duncan I.D., Watters J.J., Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IkappaBalpha degradation in a stimulus-specific manner in microglia, J. Neurochem., 2006, 96, 314-323CrossrefGoogle Scholar

  • [93] He Y., Franchi L., Nunez G., TLR agonists stimulate Nlrp3- dependent IL-1beta production independently of the purinergic P2X7 receptor in dendritic cells and in vivo, J. Immunol., 2013, 190, 334-339Google Scholar

  • [94] Inohara N., Ogura Y., Chen F.F., Muto A., Nunez G., Human Nod1 confers responsiveness to bacterial lipopolysaccharides, J. Biol. Chem., 2001, 276, 2551-2554Google Scholar

  • [95] Cho D., Hahm E., Kang J.S., Kim Y.I., Yang Y., Park J.H., et al., Vitamin C downregulates interleukin-18 production by increasing reactive oxygen intermediate and mitogenactivated protein kinase signalling in B16F10 murine melanoma cells, Melanoma Res. 2003, 13, 549-554Google Scholar

  • [96] Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, et al., A protein kinase involved in the regulation of inflammatory cytokine biosynthesis, Nature, 1994, 372, 739-746Google Scholar

  • [97] Beyaert R., Cuenda A., Vanden Berghe W., Plaisance S., Lee J.C., Haegeman G., et al., The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor, EMBO J., 1996, 15, 1914-1923Google Scholar

  • [98] Pang T., Wang J., Benicky J., Saavedra J.M., Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition, Biochim. Biophys. Acta, 2012, 1820, 503-510Google Scholar

  • [99] Bauernfeind F.G., Horvath G., Stutz A., Alnemri E.S., MacDonald K., Speert D., et al., Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression, J. Immunol., 2009, 183, 787-791Google Scholar

  • [100] Sen R., Baltimore D., Multiple nuclear factors interact with the immunoglobulin enhancer sequences, Cell, 1986, 46, 705-716CrossrefGoogle Scholar

  • [101] Blackwell T.S., Christman J.W., The role of nuclear factorkappa B in cytokine gene regulation, Am. J. Respir. Cell. Mol. Biol., 1997, 17, 3-9CrossrefGoogle Scholar

  • [102] Nishikori M., Classical and alternative NF-kappaB activation pathways and their roles in lymphoid malignancies. J. Clin. Exp. Hematop., 2005, 45, 15-24Google Scholar

  • [103] Bernardino A.L., Kaushal D., Philipp M.T., The antibiotics doxycycline and minocycline inhibit the inflammatory responses to the lyme disease spirochete borrelia burgdorferi, J. Infect. Dis., 2009, 199, 1379-1388Google Scholar

  • [104] Cai Z. Zhao Y., Yao S., Bin Zhao B., Increases in beta-amyloid protein in the hippocampus caused by diabetic metabolic disorder are blocked by minocycline through inhibition of NF-kappaB pathway activation, Pharmacol. Rep., 2011, 63, 381-391CrossrefGoogle Scholar

  • [105] Johnson L.V., Leitner W.P., Rivest A.J., Staples M.K., Radeke M.J., Anderson D.H., The alzheimer’s A beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration, Proc. Natl. Acad. Sci. USA, 2002, 99, 11830-11835CrossrefGoogle Scholar

  • [106] Dentchev T., Milam A.H., Lee V.M., Trojanowski J.Q., Dunaief J.L., Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas, Mol. Vis., 2003, 9, 184-190Google Scholar

  • [107] Kaarniranta K., Salminen A., Haapasalo A., Soininen H., Hiltunen M., Age-related macular degeneration (AMD): Alzheimer’s disease in the eye?, J. Alzheimers. Dis., 2011, 24, 615-631Google Scholar

  • [108] Viiri J., Amadio M., Marchesi N., Hyttinen J.M., Kivinen N., Sironen R., et al., Autophagy activation clears ELAVL1/HuRmediated accumulation of SQSTM1/p62 during proteasomal inhibition in human retinal pigment epithelial cells, PLoS One, 2013, 8, e69563Google Scholar

  • [109] Ferretti M.T., Allard S., Partridge V., Ducatenzeiler A., Cuello A.C., Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of alzheimer’s disease-like amyloid pathology, J. Neuroinflammation, 2012, 9, 62CrossrefGoogle Scholar

  • [110] Sutinen E.M., Pirttila T., Anderson G., Salminen A., Ojala J.O., Pro-inflammatory interleukin-18 increases alzheimer’s disease-associated amyloid-beta production in human neuron-like cells, J. Neuroinflammation, 2012, 9, 199Google Scholar

  • [111] Si Q., Cosenza M., Kim M.O., Zhao M.L., Brownlee M., Goldstein H., et al., A novel action of minocycline: Inhibition of human immunodeficiency virus type 1 infection in microglia, J. Neurovirol., 2004, 10, 284-292CrossrefGoogle Scholar

  • [112] Liu Y., Kimura K., Yanai R., Chikama T., Nishida T., Cytokine, chemokine, and adhesion molecule expression mediated by MAPKs in human corneal fibroblasts exposed to poly(I:C), Invest. Ophthalmol. Vis. Sci., 2008, 49, 3336-3344CrossrefGoogle Scholar

  • [113] Hassler M., Ladurner A.G., Towards a structural understanding of PARP1 activation and related signalling ADP-ribosyl-transferases, Curr. Opin. Struct. Biol., 2012, 22, 721-729CrossrefGoogle Scholar

  • [114] Abeti R., Duchen M.R., Activation of PARP by oxidative stress induced by beta-amyloid, Implications for alzheimer’s disease, Neurochem. Res., 2012, 37, 2589-2596CrossrefGoogle Scholar

  • [115] Abeti R., Abramov A.Y., Duchen MR. Beta-amyloid activates PARP causing astrocytic metabolic failure and neuronal death, Brain 2011, 134, 1658-1672Google Scholar

  • [116] Ullrich O., Diestel A., Eyupoglu I.Y., Nitsch R., Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1, Nat. Cell. Biol., 2001, 3, 1035-1042CrossrefGoogle Scholar

  • [117] Kauppinen T.M., Swanson R.A., Poly(ADP-ribose) polymerase-1 promotes microglial activation, proliferation, and matrix metalloproteinase-9-mediated neuron death, J. Immunol., 2005, 174, 2288-2296 Google Scholar

  • [118] Oliver F.J., Menissier-de Murcia J., Nacci C., Decker P., Andriantsitohaina R., Muller S., et al., Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADPribose)polymerase-1 deficient mice, EMBO J., 1999, 18, 4446-4454CrossrefGoogle Scholar

  • [119] Kauppinen T.M., Gan L., Swanson R.A., Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-kappaB transcriptional activity by preventing p65 de-acetylation, Biochim. Biophys. Acta, 2013, 1833, 1985-1991Google Scholar

  • [120] Alano C.C., Kauppinen T.M., Valls A.V., Swanson R.A., Minocycline inhibits poly(ADPribose)polymerase-1 at nanomolar concentrations, Proc. Natl. Acad. Sci. USA, 2006, 103, 9685-9690CrossrefGoogle Scholar

  • [121] Kauppinen T.M., Chan W.Y., Suh S.W., Wiggins A.K., Huang E.J., Swanson R.A., Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signalregulated kinases 1/2, Proc. Natl. Acad. Sci. USA, 2006, 103, 7136-7141Google Scholar

  • [122] Giansanti V., Dona F., Tillhon M., Scovassi A.I., PARP inhibitors: New tools to protect from inflammation, Biochem. Pharmacol., 2010, 80, 1869-1877CrossrefGoogle Scholar

  • [123] Ditsworth D., Zong W.X., Thompson CB., Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus, J. Biol. Chem., 2007, 282, 17845-17854Google Scholar

  • [124] Johnson G.L., Lapadat R., Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases, Science, 2002, 298, 1911-1912Google Scholar

  • [125] Martin-Blanco E., p38 MAPK signalling cascades: Ancient roles and new functions, Bioessays, 2000, 22, 637-645CrossrefGoogle Scholar

  • [126] Rincon M., Davis R.J., Regulation of the immune response by stress-activated protein kinases, Immunol. Rev., 2009, 228, 212-224CrossrefGoogle Scholar

  • [127] Stirling D.P., Koochesfahani K.M., Steeves J.D., Tetzlaff W., Minocycline as a neuroprotective agent, Neuroscientist, 2005, 11, 308-322CrossrefGoogle Scholar

  • [128] Cuenda A., Rousseau S., p38 MAP-kinases pathway regulation, function and role in human diseases, Biochim. Biophys. Acta., 2007, 1773, 1358-1375Google Scholar

  • [129] Du Y., Ma Z., Lin S., Dodel R.C., Gao F., Bales K.R., et al., Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of parkinson’s disease, Proc. Natl. Acad. Sci. USA, 2001, 98, 14669-14674CrossrefGoogle Scholar

  • [130] Tikka T., Fiebich B.L., Goldsteins G., Keinanen R., Koistinaho J., Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia, J. Neurosci., 2001, 21, 2580-2588Google Scholar

  • [131] Follstaedt S.C., Barber S.A., Zink M.C., Mechanisms of minocycline-induced suppression of simian immunodeficiency virus encephalitis: Inhibition of apoptosis signal-regulating kinase 1, J. Neurovirol., 2008, 14, 376-388Google Scholar

  • [132] Nagai H., Noguchi T., Takeda K., Ichijo H., Pathophysiological roles of ASK1-MAP kinase signaling pathways, J. Biochem. Mol. Biol., 2007, 40, 1-6 CrossrefGoogle Scholar

  • [133] Pi R., Li W., Lee N.T., Chan H.H., Pu Y., Chan L.N., et al., Minocycline prevents glutamateinduced apoptosis of cerebellar granule neurons by differential regulation of p38 and akt pathways, J. Neurochem., 2004, 91, 1219-1230CrossrefGoogle Scholar

  • [134] Lin S., Zhang Y., Dodel R., Farlow M.R., Paul S.M., Du Y., Minocycline blocks nitric oxide-induced neurotoxicity by inhibition p38 MAP kinase in rat cerebellar granule neurons, Neurosci. Lett., 2001, 315, 61-64Google Scholar

  • [135] Yune T.Y., Lee J.Y., Jung G.Y., Kim S.J., Jiang M.H., Kim Y.C., et. al., Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury, J. Neurosci., 2007, 27, 7751-7761CrossrefGoogle Scholar

  • [136] Guo G, Bhat N.R., p38alpha MAP kinase mediates hypoxiainduced motor neuron cell death: A potential target of minocycline’s neuroprotective action, Neurochem. Res., 2007, 32, 2160-2166CrossrefGoogle Scholar

  • [137] Mehta A., Prabhakar M., Kumar P., Deshmukh R., Sharma P.L., Excitotoxicity: Bridge to various triggers in neurodegenerative disorders, Eur. J. Pharmacol., 2013, 698, 6-18Google Scholar

  • [138] Piao Z.G., Cho I.H., Park C.K., Hong J.P., Choi S.Y., Lee S.J., et al., Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury, Pain, 2006, 121, 219-231CrossrefGoogle Scholar

  • [139] Hua X.Y., Svensson C.I., Matsui T., Fitzsimmons B., Yaksh T.L., Webb M., Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia, Eur. J. Neurosci., 2005, 22, 2431-2440CrossrefGoogle Scholar

  • [140] Sung C.S., Wen Z.H., Chang W.K., Chan K.H., Ho S.T., Tsai S.K., et al., Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord, J. Neurochem., 2005, 94, 742-752CrossrefGoogle Scholar

  • [141] Roberts J., Ossipov M.H., Porreca F., Glial activation in the rostroventromedial medulla promotes descending facilitation to mediate inflammatory hypersensitivity, Eur. J. Neurosci., 2009, 30, 229-241CrossrefGoogle Scholar

  • [142] Matsui T., Svensson C.I., Hirata Y., Mizobata K., Hua X.Y., Yaksh T.L., Release of prostaglandin E(2) and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase, Anesth. Analg., 2010, 111, 554-560CrossrefGoogle Scholar

  • [143] Won K.A., Kang Y.M., Lee M.K., Park M.K., Ju J.S., Bae Y.C., et al., Participation of microglial p38 MAPK in formalininduced temporomandibular joint nociception in rats, J. Orofac., Pain, 2012, 26, 132-141Google Scholar

  • [144] Cui Y., Liao X.X., Liu W., Guo R.X., Wu Z.Z., Zhao C.M., et al., A novel role of minocycline: Attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia, Brain. Behav. Immun., 2008, 22, 114-123CrossrefGoogle Scholar

  • [145] Joks R., Durkin H.G., Non-antibiotic properties of tetracyclines as anti-allergy and asthma drugs, Pharmacol. Res., 2011, 64, 602-609 CrossrefGoogle Scholar

  • [146] Ji R.R., Gereau R.W. 4th, Malcangio M., Strichartz G.R., MAP kinase and pain, Brain. Res. Rev., 2009, 60, 135-148Google Scholar

  • [147] Gao Y.J., Ji R.R., Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: Involvement of spinal astrocytes and JNK signaling in touchevoked central sensitization and mechanical allodynia, J. Neurochem., 2010, 115, 505-514CrossrefGoogle Scholar

  • [148] Song X., Xu A., Pan W., Wallin B., Kivlin R., Lu S., et al., Minocycline protects melanocytes against H2O2-induced cell death via JNK and p38 MAPK pathways, Int. J. Mol. Med., 2008, 22, 9-16Google Scholar

  • [149] Mishra M.K., Basu A., Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following japanese encephalitis, J. Neurochem., 2008, 105, 1582-1595CrossrefGoogle Scholar

  • [150] Vanden Berghe W., Vermeulen L., De Wilde G., De Bosscher K., Boone E., Haegeman G., Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6, Biochem. Pharmacol., 2000, 60, 1185-1195CrossrefGoogle Scholar

  • [151] Cho J.W., Lee K.S., Kim C.W., Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells, NF-kappaB and MAPKs as potential upstream targets, Int. J. Mol. Med., 2007, 19, 469-474Google Scholar

  • [152] Kuldo J.M., Westra J., Asgeirsdottir S.A., Kok R.J, Oosterhuis K., Rots M.G., et al., Differential effects of NF-{kappa}B and p38 MAPK inhibitors and combinations thereof on TNF- {alpha}- and IL-1{beta}-induced proinflammatory status of endothelial cells in vitro, Am. J. Physiol. Cell. Physiol., 2005, 289, C1229-39Google Scholar

  • [153] Thompson W.L., Van Eldik L.J., Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFkB and MAPK dependent pathways in rat astrocytes [corrected], Brain. Res., 2009, 1287, 47-57Google Scholar

  • [154] Gaspari A.A., Innate and adaptive immunity and the pathophysiology of psoriasis, J. Am. Acad. Dermatol., 2006, 54, S67-80CrossrefGoogle Scholar

  • [155] Taniguchi N., Kawahara K., Yone K., Hashiguchi T., Yamakuchi M., Goto M., et al., High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine, Arthritis. Rheum., 2003, 48, 971-981CrossrefGoogle Scholar

  • [156] Bustin M., Reeves R., High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function, Prog. Nucleic Acid Res. Mol. Biol., 1996, 54, 35-100CrossrefGoogle Scholar

  • [157] Lange S.S., Mitchell D.L., Vasquez KM. High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage, Proc. Natl. Acad. Sci. USA, 2008, 105, 10320-10325CrossrefGoogle Scholar

  • [158] Boonyaratanakornkit V., Melvin V., Prendergast P., Altmann M., Ronfani L., Bianchi M.E., et al., High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells, Mol. Cell. Biol. 1998, 18, 4471-4487Google Scholar

  • [159] Degryse B., de Virgilio M., The nuclear protein HMGB1, a new kind of chemokine? FEBS Lett., 2003, 553, 11-17Google Scholar

  • [160] Andersson U., Wang H., Palmblad K., Aveberger A.C., Bloom O, Erlandsson-Harris H, et al., High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes, J. Exp. Med., 2000, 192, 565-570Google Scholar

  • [161] Kim J.B., Sig Choi J., Yu Y.M., Nam K., Piao C.S., Kim S.W., et al., HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 2006, 26, 6413-6421Google Scholar

  • [162] Hayakawa K., Mishima K., Nozako M., Hazekawa M., Mishima S., Fujioka M., et al., Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1- inhibiting mechanism, Stroke, 2008, 39, 951-958CrossrefGoogle Scholar

  • [163] Kikuchi K., Kawahara K., Biswas K.K., Ito T., Tancharoen S., Morimoto Y., et al., Minocycline attenuates both OGDinduced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells, Biochem. Biophys. Res. Commun., 2009, 385, 132-136Google Scholar

  • [164] Hu X., Zhou X., He B., Xu C., Wu L., Cui B., et al., Minocycline protects against myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein in rats, Eur. J. Pharmacol., 2010, 638, 84-89Google Scholar

  • [165] Kawahara K., Biswas K.K., Unoshima M., Ito T., Kikuchi K., Morimoto Y., et al., C-reactive protein induces high-mobility group box-1 protein release through activation of p38MAPK in macrophage RAW264.7 cell, Cardiovasc. Pathol., 2008, 17, 129-138Google Scholar

  • [166] Jacot J.L., Sherris D., Potential therapeutic roles for inhibition of the PI3K/Akt/mTOR pathway in the pathophysiology of diabetic retinopathy, J. Ophthalmol., 2011, 2011, 589813Google Scholar

  • [167] Mohammad G., Siddiquei M.M., Othman A., Al-Shabrawey M., Abu El-Asrar A.M., Highmobility group box-1 protein activates inflammatory signaling pathway components and disrupts retinal vascular-barrier in the diabetic retina, Exp. Eye Res., 2013, 107, 101-109CrossrefGoogle Scholar

  • [168] El-Asrar A.M., Nawaz M.I., Kangave D., Geboes K., Ola M.S., Ahmad S., et al., Highmobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy, Mol. Vis. 2011, 17, 1829-1838Google Scholar

  • [169] Bhutto I., Lutty G., Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/ choriocapillaris complex, Mol. Aspects Med., 2012, 33, 295-317CrossrefGoogle Scholar

  • [170] Miller J.W., Le Couter J., Strauss E.C., Ferrara N., Vascular endothelial growth factor a in intraocular vascular disease, Ophthalmology, 2013, 120, 106-114CrossrefGoogle Scholar

  • [171] Kawahara K., Hashiguchi T., Kikuchi K., Tancharoen S., Miura N., Ito T., et al., Induction of high mobility group box 1 release from serotonin-stimulated human umbilical vein endothelial cells, Int. J. Mol. Med., 2008, 22, 639-644Google Scholar

  • [172] Jung Y.J., Isaacs J.S., Lee S., Trepel J., Neckers L., IL-1betamediated up-regulation of HIF-1alpha via an NFkappaB/ COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis, FASEB J., 2003, 17, 2115-2117Google Scholar

  • [173] Doyle S.L., Campbell M., Ozaki E., Salomon R.G., Mori A., Kenna P.F., et al., NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components, Nat. Med., 2012, 18, 791-798CrossrefGoogle Scholar

  • [174] Tarallo V., Hirano Y., Gelfand B.D., Dridi S., Kerur N., Kim Y., et al., DICER1 loss and alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88, Cell, 2012, 149, 847-859Google Scholar

  • [175] Campbell M., Doyle S.L., An eye on the future of inflammasomes and drug development in AMD, J. Mol. Med. (Berl), in press, doi: 10.1007/s00109-013-1050-0, 2013CrossrefGoogle Scholar

  • [176] Lane T., Flam B., Lockey R., Kolliputi N., TXNIP shuttling: Missing link between oxidative stress and inflammasome activation, Front. Physiol., 2013, 4, 50 Google Scholar

About the article

Received: 2013-06-28

Accepted: 2013-10-14

Published Online: 2013-11-29

Published in Print: 2014-01-01


Citation Information: Inflammasome, ISSN (Online) 2300-102X, DOI: https://doi.org/10.2478/infl-2013-0002.

Export Citation

©2013 Anu Kauppinen et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in