Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Pelegrin, Pablo

Ed. by Lopez-Castejón, Gloria

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

The zebrafish as a model to study the inflammasome

Diego Angosto
  • Corresponding author
  • Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
  • Instituto Murciano de Investigaciones Biosanitarias (IMIB), Murcia, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Victoriano Mulero
  • Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
  • Instituto Murciano de Investigaciones Biosanitarias (IMIB), Murcia, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-09 | DOI: https://doi.org/10.2478/infl-2014-0002


Our knowledge about the inflammasome and the nucleotide-binding domain and leucine-rich repeat containing receptor (NLR) family has increased enormously during recent years due to studies in transgenic and mutant mouse models. Although the mouse provides many advantages for deciphering the mechanisms involved in inflammasome activation and its role in immunity, other animal models, such as the zebrafish may be complementary, especially for the in vivo visualization of inflammasome activation. Indeed, the zebrafish has emerged as an excellent model to study a wide variety of diseases due to its unique advantages, including its transparency and easy genetic manipulation. Here we briefly discuss the evolutionary aspects of the inflammasome and consider the use of the zebrafish to study the inflammasome complementary to the widely used mouse model.

Keywords: inflammasome; pyroptosis; interleukin-1β; caspase-1; evolution; fish


  • [1] Lamkanfi M., Dixit V.M., Modulation of inflammasome pathways by bacterial and viral pathogens, J Immunol, 2011, 187, 597-602.Google Scholar

  • [2] Ghayur T., Banerjee S., Hugunin M., Butler D., Herzog L., Carter A., Quintal L., Sekut L., Talanian R., Paskind M., et al., Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production, Nature, 1997, 386, 619-623.Google Scholar

  • [3] Gu Y., Kuida K., Tsutsui H., Ku G., Hsiao K., Fleming M.A., Hayashi N., Higashino K., Okamura H., Nakanishi K., et al., Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme, Science, 1997, 275, 206-209.Google Scholar

  • [4] Kuida K., Lippke J.A., Ku G., Harding M.W., Livingston D.J., Su M.S., Flavell R.A., Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme, Science, 1995, 267, 2000-2003.Google Scholar

  • [5] Li P., Allen H., Banerjee S., Franklin S., Herzog L., Johnston C., McDowell J., Paskind M., Rodman L., Salfeld J., et al., Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock, Cell, 1995, 80, 401-411.Google Scholar

  • [6] von Moltke J., Ayres J.S., Kofoed E.M., Chavarria-Smith J., Vance R.E., Recognition of Bacteria by Inflammasomes, Annu Rev Immunol, 2012, Web of ScienceGoogle Scholar

  • [7] Kayagaki N., Warming S., Lamkanfi M., Vande Walle L., Louie S., Dong J., Newton K., Qu Y., Liu J., Heldens S., et al., Non-canonical inflammasome activation targets caspase-11, Nature, 2011, 479, 117-121.Google Scholar

  • [8] Hilbi H., Moss J.E., Hersh D., Chen Y., Arondel J., Banerjee S., Flavell R.A., Yuan J., Sansonetti P.J., Zychlinsky A., Shigellainduced apoptosis is dependent on caspase-1 which binds to IpaB, J Biol Chem, 1998, 273, 32895-32900.Google Scholar

  • [9] Jones J.W., Kayagaki N., Broz P., Henry T., Newton K., O’Rourke K., Chan S., Dong J., Qu Y., Roose-Girma M., et al., Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis, Proc Natl Acad Sci U S A, 2010, 107, 9771-9776.Google Scholar

  • [10] Lamkanfi M., Dixit V.M., Manipulation of host cell death pathways during microbial infections, Cell Host Microbe, 2010, 8, 44-54.Web of ScienceGoogle Scholar

  • [11] Miao E.A., Mao D.P., Yudkovsky N., Bonneau R., Lorang C.G., Warren S.E., Leaf I.A., Aderem A., Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proc Natl Acad Sci U S A, 2010, 107, 3076-3080.Google Scholar

  • [12] Terra J.K., Cote C.K., France B., Jenkins A.L., Bozue J.A., Welkos S.L., LeVine S.M., Bradley K.A., Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b, J Immunol, 2010, 184, 17-20.Web of ScienceGoogle Scholar

  • [13] Laing K.J., Purcell M.K., Winton J.R., Hansen J.D., A genomic view of the NOD-like receptor family in teleost fish: identification of a novel NLR subfamily in zebrafish, BMC Evol Biol, 2008, 8, 42.Web of ScienceGoogle Scholar

  • [14] Bird S., Zou J., Wang T., Munday B., Cunningham C., Secombes C.J., Evolution of interleukin-1beta, Cytokine Growth Factor Rev, 2002, 13, 483-502.Google Scholar

  • [15] Angosto D., Lopez-Castejon G., Lopez-Munoz A., Sepulcre M.P., Arizcun M., Meseguer J., Mulero V., Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1beta, Innate Immun, 2012, 18, 815-824.Web of ScienceGoogle Scholar

  • [16] Compan V., Baroja-Mazo A., Lopez-Castejon G., Gomez A.I., Martinez C.M., Angosto D., Montero M.T., Herranz A.S., Bazan E., Reimers D., et al., Cell volume regulation modulates NLRP3 inflammasome activation, Immunity, 2012, 37, 487-500.Web of ScienceGoogle Scholar

  • [17] Reis M.I., do Vale A., Pereira P.J., Azevedo J.E., Dos Santos N.M., Caspase-1 and IL-1beta processing in a teleost fish, PLoS One, 2012, 7, e50450.Web of ScienceGoogle Scholar

  • [18] Huising M.O., Stet R.J., Savelkoul H.F., Verburg-van Kemenade B.M., The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish, Dev Comp Immunol, 2004, 28, 395-413.Google Scholar

  • [19] Renshaw S.A., Trede N.S., A model 450 million years in the making: zebrafish and vertebrate immunity, Dis Model Mech, 2012, 5, 38-47.Web of ScienceGoogle Scholar

  • [20] Meijer A.H., Spaink H.P., Host-pathogen interactions made transparent with the zebrafish model, Curr Drug Targets, 2011, 12, 1000-1017.Google Scholar

  • [21] Zon L.I., Peterson R.T., In vivo drug discovery in the zebrafish, Nat Rev Drug Discov, 2005, 4, 35-44.Google Scholar

  • [22] Vojtech L.N., Scharping N., Woodson J.C., Hansen J.D., Roles of inflammatory caspases during processing of zebrafish interleukin-1beta in Francisella noatunensis infection, Infect Immun, 2012, 80, 2878-2885.Web of ScienceGoogle Scholar

  • [23] Shenoy A.R., Wellington D.A., Kumar P., Kassa H., Booth C.J., Cresswell P., MacMicking J.D., GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals, Science, 2012, 336, 481-485. Web of ScienceGoogle Scholar

About the article

Received: 2013-10-23

Accepted: 2014-01-28

Published Online: 2014-04-09

Published in Print: 2014-01-01

Citation Information: Inflammasome, ISSN (Online) 2300-102X, DOI: https://doi.org/10.2478/infl-2014-0002.

Export Citation

©2014 Diego Angosto, Victoriano Mulero. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Paola Kuri, Nicole L. Schieber, Thomas Thumberger, Joachim Wittbrodt, Yannick Schwab, and Maria Leptin
The Journal of Cell Biology, 2017, Page jcb.201703103

Comments (0)

Please log in or register to comment.
Log in