Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Pelegrin, Pablo

Ed. by Lopez-Castejón, Gloria

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Epilepsy and the inflammasome: Targeting inflammation as a novel therapeutic strategy for seizure disorders

Michelle E. Edye
  • Corresponding author
  • Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lauren E. Walker
  • Corresponding author
  • Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GL, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Graeme J. Sills
  • Corresponding author
  • Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GL, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stuart M. Allan
  • Corresponding author
  • Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David Brough
  • Corresponding author
  • Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-17 | DOI: https://doi.org/10.2478/infl-2014-0004


Epilepsy is the most common serious brain disorder worldwide. Recent evidence from experimental models of epilepsy and clinical brain tissue from epilepsy surgery suggests inflammation may play a pathological role in this disorder. Activation of a multimolecular protein complex termed the ‘inflammasome’ occurs during inflammation to drive the innate immune response. Inflammasome activation, with release of inflammatory mediators including interleukin-1β and high-mobility group box-1, may play a crucial role in the development of epilepsy (epileptogenesis) after brain insult. Immunomodulatory drugs targeting the inflammasome pathway may represent a novel antiepileptogenic treatment strategy for epilepsy. This review summarises the current literature surrounding inflammasome activation and epilepsy.

Keywords: Inflammasome; epilepsy; seizures; high mobility group box-1; HMGB1; interleukin-1β


  • [1] A. Vezzani, A. Friedman, and R. J. Dingledine, “The role of inflammation in epileptogenesis.,” Neuropharmacology, vol. 69, pp. 16–24, Jun. 2013. Google Scholar

  • [2] N. Yu, H. Liu, and Q. Di, “Modulation of Immunity and the Inflammatory Response: A New Target for Treating Drug-resistant Epilepsy.,” Curr. Neuropharmacol., vol. 11, no. 1, pp. 114–27, Jan. 2013. Google Scholar

  • [3] K. L. Rock, E. Latz, F. Ontiveros, and H. Kono, “The sterile inflammatory response.,” Annu. Rev. Immunol., vol. 28, pp. 321–42, Jan. 2010. CrossrefGoogle Scholar

  • [4] S. M. Allan, P. J. Tyrrell, and N. J. Rothwell, “Interleukin-1 and neuronal injury,” Nat. Rev. Immunol., vol. 5, pp. 629–640, 2005. Google Scholar

  • [5] A. Vezzani, “Inflammation and epilepsy.,” Epilepsy Curr., vol. 5, no. 1, pp. 1–6. Google Scholar

  • [6] V. Compan, A. Baroja-Mazo, G. López-Castejón, A. I. Gomez, C. M. Martínez, D. Angosto, M. T. Montero, A. S. Herranz, E. Bazán, D. Reimers, V. Mulero, and P. Pelegrín, “Cell volume regulation modulates NLRP3 inflammasome activation.,” Immunity, vol. 37, no. 3, pp. 487–500, Sep. 2012. Google Scholar

  • [7] K. Schroder and J. Tschopp, “The Inflammasomes,” Cell, vol. 140, pp. 821–832, 2010. Google Scholar

  • [8] J. G. Walsh, D. A. Muruve, and C. Power, “Inflammasomes in the CNS.,” Nat. Rev. Neurosci., vol. 15, no. 2, pp. 84–97, Feb. 2014. CrossrefGoogle Scholar

  • [9] M. Lamkanfi, A. Sarkar, L. Vande Walle, A. C. Vitari, A. O. Amer, M. D. Wewers, K. J. Tracey, T.-D. Kanneganti, and V. M. Dixit, “Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia.,” J. Immunol., vol. 185, no. 7, pp. 4385–92, Oct. 2010. Google Scholar

  • [10] M. E. Bianchi, M. Beltrame, and G. Paonessa, “Specific recognition of cruciform DNA by nuclear protein HMG1.,” Science, vol. 243, no. 4894 Pt 1, pp. 1056–9, Feb. 1989. Google Scholar

  • [11] G. H. Goodwin, C. Sanders, and E. W. Johns, “A New Group of Chromatin-Associated Proteins with a High Content of Acidic and Basic Amino Acids,” Eur. J. Biochem., vol. 38, no. 1, pp. 14–19, Sep. 1973. Google Scholar

  • [12] M. T. Lotze and K. J. Tracey, “High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal.,” Nat. Rev. Immunol., vol. 5, no. 4, pp. 331–42, Apr. 2005. Google Scholar

  • [13] U. Andersson and K. J. Tracey, “HMGB1 is a therapeutic target for sterile inflammation and infection.,” Annu. Rev. Immunol., vol. 29, pp. 139–62, Jan. 2011. CrossrefGoogle Scholar

  • [14] B. Lu, T. Nakamura, K. Inouye, J. Li, Y. Tang, P. Lundbäck, S. I. Valdes-Ferrer, P. S. Olofsson, T. Kalb, J. Roth, Y. Zou, H. Erlandsson-Harris, H. Yang, J. P.-Y. Ting, H. Wang, U. Andersson, D. J. Antoine, S. S. Chavan, G. S. Hotamisligil, and K. J. Tracey, “Novel role of PKR in inflammasome activation and HMGB1 release.,” Nature, vol. 488, no. 7413, pp. 670–4, Aug. 2012. Google Scholar

  • [15] H. Yang, H. S. Hreggvidsdottir, K. Palmblad, H. Wang, M. Ochani, J. Li, B. Lu, S. Chavan, M. Rosas-Ballina, Y. Al-Abed, S. Akira, A. Bierhaus, H. Erlandsson-Harris, U. Andersson, and K. J. Tracey, “A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release.,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 26, pp. 11942–7, Jun. 2010. Google Scholar

  • [16] M. Schiraldi, A. Raucci, L. M. Muñoz, E. Livoti, B. Celona, E. Venereau, T. Apuzzo, F. De Marchis, M. Pedotti, A. Bachi, M. Thelen, L. Varani, M. Mellado, A. Proudfoot, M. E. Bianchi, and M. Uguccioni, “HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4.,” J. Exp. Med., vol. 209, no. 3, pp. 551–63, Mar. 2012. Google Scholar

  • [17] E. Venereau, M. Casalgrandi, M. Schiraldi, D. J. Antoine, A. Cattaneo, F. De Marchis, J. Liu, A. Antonelli, A. Preti, L. Raeli, S. S. Shams, H. Yang, L. Varani, U. Andersson, K. J. Tracey, A. Bachi, M. Uguccioni, and M. E. Bianchi, “Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release.,” J. Exp. Med., vol. 209, no. 9, pp. 1519–28, Aug. 2012. Google Scholar

  • [18] E. Atkins, “Pathogenesis of Fever,” Physiol Rev, vol. 40, no. 3, pp. 580–646, Jul. 1960. Google Scholar

  • [19] C. A. Dinarello, A. Simon, and J. W. M. van der Meer, “Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases.,” Nat. Rev. Drug Discov., vol. 11, no. 8, pp. 633–52, Aug. 2012. Google Scholar

  • [20] E. Zurolo, A. Iyer, M. Maroso, C. Carbonell, J. J. Anink, T. Ravizza, K. Fluiter, W. G. M. Spliet, P. C. van Rijen, A. Vezzani, and E. Aronica, “Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development.,” Brain, vol. 134, no. Pt 4, pp. 1015–32, Apr. 2011. Google Scholar

  • [21] H. S. Hreggvidsdottir, T. Ostberg, H. Wähämaa, H. Schierbeck, A.-C. Aveberger, L. Klevenvall, K. Palmblad, L. Ottosson, U. Andersson, and H. E. Harris, “The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation.,” J. Leukoc. Biol., vol. 86, no. 3, pp. 655–62, Sep. 2009. Google Scholar

  • [22] M. Lamkanfi and V. M. Dixit, “Mechanisms and Functions of Inflammasomes,” Cell, vol. 157, no. 5, pp. 1013–1022, May 2014. Google Scholar

  • [23] C. Eriksson, A. M. Van Dam, P. J. Lucassen, J. Bol, B. Winblad, and M. Schultzberg, “Immunohistochemical localization of interleukin-1 beta, interleukin-1 receptor antagonist and interleuktn-1 beta converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid,” Neuroscience, vol. 93, pp. 915–930, 1999. Google Scholar

  • [24] M. Maroso, S. Balosso, T. Ravizza, J. Liu, E. Aronica, A. M. Iyer, C. Rossetti, M. Molteni, M. Casalgrandi, A. A. Manfredi, M. E. Bianchi, and A. Vezzani, “Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures.,” Nat. Med., vol. 16, no. 4, pp. 413–9, Apr. 2010. Google Scholar

  • [25] A. Vezzani, N. Conti, A. De Luigi, T. Ravizza, D. Moneta, F. Marchesi, and M. G. De Simoni, “Interleukin-l beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: Functional evidence for enhancement of electrographic seizures,” J. Neurosci., vol. 19, pp. 5054–5065, 1999. Google Scholar

  • [26] C. M. Dube, T. Ravizza, M. Hamamura, Q. Zha, A. Keebaugh, K. Fok, A. L. Andres, O. Nalcioglu, A. Obenaus, A. Vezzani, and T. Z. Baram, “Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers,” J Neurosci, vol. 30, pp. 7484–7494, 2010. CrossrefGoogle Scholar

  • [27] T. Ravizza and A. Vezzani, “Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system.,” Neuroscience, vol. 137, no. 1, pp. 301–8, Jan. 2006. Google Scholar

  • [28] T. Ravizza, F. Noe, D. Zardoni, V. Vaghi, M. Sifringer, and A. Vezzani, “Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1 beta production,” Neurobiol. Dis., vol. 31, pp. 327–333, 2008. Google Scholar

  • [29] S. Haspolat, E. Mihci, M. Coskun, S. Gumuslu, T. Ozbenm, and O. Yegin, “Interleukin-1 beta, tumor necrosis factor-alpha, and nitrite levels in febrile seizures,” J. Child Neurol., vol. 17, pp. 749–751, 2002. Google Scholar

  • [30] V. Ramaswamy, J. G. Walsh, D. B. Sinclair, E. Johnson, R. Tang-Wai, B. M. Wheatley, W. Branton, F. Maingat, T. Snyder, D. W. Gross, and C. Power, “Inflammasome induction in Rasmussen’s encephalitis: cortical and associated white matter pathogenesis.,” J. Neuroinflammation, vol. 10, no. 1, p. 152, Jan. 2013. Google Scholar

  • [31] T. Ravizza, K. Boer, S. Redeker, W. G. M. Spliet, P. C. van Rijen, D. Troost, A. Vezzani, and E. Aronica, “The IL-1beta system in epilepsy-associated malformations of cortical development.,” Neurobiol. Dis., vol. 24, no. 1, pp. 128–43, Oct. 2006. Google Scholar

  • [32] V. Iori, M. Maroso, M. Rizzi, A. M. Iyer, R. Vertemara, M. Carli, A. Agresti, A. Antonelli, M. E. Bianchi, E. Aronica, T. Ravizza, and A. Vezzani, “Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures.,” Neurobiol. Dis., vol. 58, pp. 102–14, Oct. 2013. Google Scholar

  • [33] M. Maroso, S. Balosso, T. Ravizza, J. Liu, M. E. Bianchi, and A. Vezzani, “Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1.,” J. Intern. Med., vol. 270, no. 4, pp. 319–26, Oct. 2011. Google Scholar

  • [34] A. Vezzani, D. Moneta, C. Richichi, M. Aliprandi, S. J. Burrows, T. Ravizza, C. Perego, and M. G. De Simoni, “Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis,” Epilepsia, vol. 43, pp. 30–35, 2002. CrossrefGoogle Scholar

  • [35] A. Vezzani, D. Moneta, M. Conti, C. Richichi, T. Ravizza, A. De Luigi, M. G. De Simoni, G. Sperk, S. Andell-Jonsson, J. Lundkvist, K. Iverfeldt, and T. Bartfai, “Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice,” Proc. Natl. Acad. Sci. U. S. A., vol. 97, pp. 11534–11539, 2000. Google Scholar

  • [36] B. Viviani, S. Bartesaghi, F. Gardoni, A. Vezzani, M. M. Behrens, T. Bartfai, M. Binaglia, E. Corsini, M. Di Luca, C. L. Galli, and M. Marinovich, “Interleukin-1 beta enhances NMDA receptormediated intracellular calcium increase through activation of the Src family of kinases,” J. Neurosci., vol. 23, pp. 8692–8700, 2003. Google Scholar

  • [37] S. Balosso, M. Maroso, M. Sanchez-Alavez, T. Ravizza, A. Frasca, T. Bartfai, and A. Vezzani, “A novel non-transcriptional pathway mediates the proconvulsive effects of interleukin-1 beta,” Brain, vol. 131, pp. 3256–3265, 2008. Google Scholar

  • [38] S. Balosso, J. Liu, M. E. Bianchi, and A. Vezzani, “Disulfide-Containing High Mobility Group Box-1 Promotes N-Methyl-d-Aspartate Receptor Function and Excitotoxicity by Activating Toll-Like Receptor 4-Dependent Signaling in Hippocampal Neurons.,” Antioxid. Redox Signal., Jan. 2014. Google Scholar

  • [39] Z. C. Ye and H. Sontheimer, “Cytokine modulation of glial glutamate uptake: A possible involvement of nitric oxide,” Neuroreport, vol. 7, pp. 2181–2185, 1996. CrossrefGoogle Scholar

  • [40] P. Bezzi, M. Domercq, L. Brambilla, R. Galli, D. Schols, E. De Clercq, A. Vescovi, G. Bagetta, G. Kollias, J. Meldolesi, and A. Volterra, “CXCR4-activated astrocyte glutamate release via TNFa: amplification by microglia triggers neurotoxicity,” Nat. Neurosci., vol. 4, pp. 702–710, 2001. Google Scholar

  • [41] H. Yang, M. Ochani, J. Li, X. Qiang, M. Tanovic, H. E. Harris, S. M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, C. J. Czura, H. Wang, J. Roth, H. S. Warren, M. P. Fink, M. J. Fenton, U. Andersson, and K. J. Tracey, “Reversing established sepsis with antagonists of endogenous high-mobility group box 1.,” Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 1, pp. 296–301, Jan. 2004. CrossrefGoogle Scholar

  • [42] D. Kudo, M. Toyama, T. Aoyagi, Y. Akahori, H. Yamamoto, K. Ishii, E. Kanno, R. Maruyama, M. Kaku, S. Kushimoto, and K. Kawakami, “Involvement of high mobility group box 1 and the therapeutic effect of recombinant thrombomodulin in a mouse model of severe acute respiratory distress syndrome.,” Clin. Exp. Immunol., vol. 173, no. 2, pp. 276–87, Aug. 2013. Google Scholar

  • [43] H. Wang, H. Liao, M. Ochani, M. Justiniani, X. Lin, L. Yang, Y. Al-Abed, H. Wang, C. Metz, E. J. Miller, K. J. Tracey, and L. Ulloa, “Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis.,” Nat. Med., vol. 10, no. 11, pp. 1216–21, Nov. 2004. Google Scholar

  • [44] S. Qin, H. Wang, R. Yuan, H. Li, M. Ochani, K. Ochani, M. Rosas-Ballina, C. J. Czura, J. M. Huston, E. Miller, X. Lin, B. Sherry, A. Kumar, G. Larosa, W. Newman, K. J. Tracey, and H. Yang, “Role of HMGB1 in apoptosis-mediated sepsis lethality.,” J. Exp. Med., vol. 203, no. 7, pp. 1637–42, Jul. 2006. Google Scholar

  • [45] T. Ravizza, S.-M. Lucas, S. Balosso, L. Bernardino, G. Ku, F. Noe, J. Malva, J. C. R. Randle, S. Allan, and A. Vezzani, “Inactivation of caspase-1 in rodent brain: A novel anticonvulsive strategy,” Epilepsia, vol. 47, pp. 1160–1168, 2006. Google Scholar

  • [46] F. M. Noe, N. Polascheck, F. Frigerio, M. Bankstahl, T. Ravizza, S. Marchini, L. Beltrame, C. R. Banderó, W. Löscher, and A. Vezzani, “Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy.,” Neurobiol. Dis., vol. 59, pp. 183–93, Nov. 2013. Google Scholar

  • [47] Y. S. Kwon, E. Pineda, S. Auvin, D. Shin, A. Mazarati, and R. Sankar, “Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain.,” J. Neuroinflammation, vol. 10, no. 1, p. 30, Jan. 2013. Google Scholar

  • [48] D. C. Henshall, M. Diaz-Hernandez, M. T. Miras-Portugal, and T. Engel, “P2X receptors as targets for the treatment of status epilepticus.,” Front. Cell. Neurosci., vol. 7, p. 237, Jan. 2013. Google Scholar

  • [49] E. M. Jimenez-Mateos, T. Engel, P. Merino-Serrais, R. C. McKiernan, K. Tanaka, G. Mouri, T. Sano, C. O’Tuathaigh, J. L. Waddington, S. Prenter, N. Delanty, M. A. Farrell, D. F. O’Brien, R. M. Conroy, R. L. Stallings, J. DeFelipe, and D. C. Henshall, “Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects,” Nat Med, vol. 18, pp. 1087–1094, 2012. Google Scholar

  • [50] T. Engel, R. Gomez-Villafuertes, K. Tanaka, G. Mesuret, A. Sanz-Rodriguez, P. Garcia-Huerta, M. Teresa Miras-Portugal, D. C. Henshall, and M. Diaz-Hernandez, “Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice,” Faseb J., vol. 26, pp. 1616–1628, 2012. CrossrefGoogle Scholar

  • [51] J.-E. Kim and T.-C. Kang, “The P2X7 receptor-pannexin-1 complex decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in mice.,” J. Clin. Invest., vol. 121, no. 5, pp. 2037–47, May 2011. CrossrefGoogle Scholar

  • [52] M. F. Santiago, J. Veliskova, N. K. Patel, S. E. Lutz, D. Caille, A. Charollais, P. Meda, and E. Scemes, “Targeting pannexin1 improves seizure outcome.,” PLoS One, vol. 6, no. 9, p. e25178, Jan. 2011.Google Scholar

About the article

Received: 2014-04-02

Accepted: 2014-05-30

Published Online: 2014-06-17

Citation Information: Inflammasome, ISSN (Online) 2300-102X, DOI: https://doi.org/10.2478/infl-2014-0004.

Export Citation

©2014 ME Edye et al. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in