Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Inflammasome

Editor-in-Chief: Pelegrin, Pablo

Ed. by Lopez-Castejón, Gloria

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-102X
See all formats and pricing
More options …

A ring-like model for ASC self-association via the CARD domain

Eva de Alba
  • Corresponding author
  • Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin, 3. Madrid-28049, Spain
  • Email:
/ Clara M. Santiveri
  • Department of Macromolecular Structures. Centro Nacional de Biotecnología. Consejo Superior de Investigaciones Científicas, Madrid, Spain
/ Javier Oroz
  • Department of Macromolecular Structures. Centro Nacional de Biotecnología. Consejo Superior de Investigaciones Científicas, Madrid, Spain
  • Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
Published Online: 2014-09-19 | DOI: https://doi.org/10.2478/infl-2014-0005

Abstract

Inflammasomes are molecular platforms controlling the innate immune response to pathogens and cellular stress. ASC is an adaptor protein common to most NLR (nucleotide-binding domain and leucine-rich repeat containing receptor) inflammasome complexes as its N-terminal PYD and C-terminal CARD interact with the homologous domains in NLR and procaspase-1. Although inflammasome activation depends on ASC oligomerization, the molecular basis of ASC self-association and the protein interactions mediating the inflammatory signaling pathway remain unknown. Both CARD and PYD domains are involved in the oligomerization process of ASC. Based on our previous structural and dynamics data on ASC we propose a model for its oligomerization consisting of a 7-member ring. In this model, CARD monomers associate via type I homotypic interactions leaving the remaining binding site of each monomer free for further oligomerization and thus ring formation. A second more open PYD ring is accommodated on top of the CARDs. Our model is discussed in light of previous work evidencing the formation of helical filaments and large globular structures by ASC. The double-ring model can help in the understanding of inflammasome assembly, nevertheless, ASC oligomerization has to be envisaged as a complex process that might include molecular organizations with structurally different features.

Keywords : ASC; NMR; protein structure; homotypic CARD-CARD interaction; inflammasome; oligomerization model; apoptosome

References

  • [1] Mariathasan S., Monack D.M., Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation, Nat Rev Immunol, 2007, 7, 31-40.Google Scholar

  • [2] Schroder K., Tschopp J., The Inflammasomes, Cell, 2010, 140, 821-832.Google Scholar

  • [3] Hoffman H.M., Brydges S.D., Genetic and Molecular Basis of Inflammasome-mediated Disease, Journal of Biological Chemistry, 2011, 286, 10889-10896.Google Scholar

  • [4] Henao-Mejia J., Elinav E., Strowig T., Flavell R.A., Inflammasomes: far beyond inflammation, Nat Immunol, 2012, 13, 321-324.CrossrefGoogle Scholar

  • [5] Lamkanfi M., Dixit V.M., Inflammasomes and Their Roles in Health and Disease, Annual Review of Cell and Developmental Biology, 2012, 28, 137-161.CrossrefGoogle Scholar

  • [6] Rathinam V.A.K., Vanaja S.K., Fitzgerald K.A., Regulation of inflammasome signaling, Nat Immunol, 2012, 13, 333-332.CrossrefGoogle Scholar

  • [7] Strowig T., Henao-Mejia J., Elinav E., Flavell R., Inflammasomes in health and disease, Nature, 2012, 481, 278-286.Google Scholar

  • [8] Latz E., Xiao T.S., Stutz A., Activation and regulation of the inflammasomes, Nat Rev Immunol, 2013, 13, 397-411.CrossrefGoogle Scholar

  • [9] Martinon F., Burns K., Tschopp J.r., The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-β, Molecular Cell, 2002, 10, 417-426.CrossrefGoogle Scholar

  • [10] Martinon F., Tschopp J.r., Inflammatory Caspases: Linking an Intracellular Innate Immune System to Autoinflammatory Diseases, Cell, 2004, 117, 561-574.Google Scholar

  • [11] Fernandes-Alnemri T., Wu J., Yu J.W., Datta P., Miller B., Jankowski W., Rosenberg S., Zhang J., Alnemri E.S., The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation, Cell Death Differ, 2007, 14, 1590-1604.Google Scholar

  • [12] Inohara N., Nunez G., NODs: intracellular proteins involved in inflammation and apoptosis, Nat Rev Immunol, 2003, 3, 371-382.CrossrefGoogle Scholar

  • [13] Park H.H., Lo Y.-C., Lin S.-C., Wang L., Yang J.K., Wu H., The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation, Annual Review of Immunology, 2007, 25, 561-586.CrossrefGoogle Scholar

  • [14] Schattgen S.A., Fitzgerald K.A., The PYHIN protein family as mediators of host defenses, Immunological Reviews, 2011, 243, 109-118.Google Scholar

  • [15] Srinivasula S.M., Poyet J.-L., Razmara M., Datta P., Zhang Z., Alnemri E.S., The PYRIN-CARD Protein ASC Is an Activating Adaptor for Caspase-1, Journal of Biological Chemistry, 2002, 277, 21119-21122.Google Scholar

  • [16] Agostini L., Martinon F., Burns K., McDermott M.F., Hawkins P.N., Tschopp J.r., NALP3 Forms an IL-1β-Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder, Immunity, 2004, 20, 319-325.CrossrefGoogle Scholar

  • [17] Yuan S., Akey C.W., Apoptosome Structure, Assembly, and Procaspase Activation, Structure, 2013, 21, 501-515.CrossrefGoogle Scholar

  • [18] Masumoto J., Taniguchi S.i., Ayukawa K., Sarvotham H., Kishino T., Niikawa N., Hidaka E., Katsuyama T., Higuchi T., Sagara J., ASC, a Novel 22-kDa Protein, Aggregates during Apoptosis of Human Promyelocytic Leukemia HL-60 Cells, Journal of Biological Chemistry, 1999, 274, 33835-33838.Google Scholar

  • [19] Conway K.E., McConnell B.B., Bowring C.E., Donald C.D., Warren S.T., Vertino P.M., TMS1, a Novel Proapoptotic Caspase Recruitment Domain Protein, Is a Target of Methylation-induced Gene Silencing in Human Breast Cancers, Cancer Research, 2000, 60, 6236-6242.Google Scholar

  • [20] Liepinsh E., Barbals R., Dahl E., Sharipo A., Staub E., Otting G., The Death-domain Fold of the ASC PYRIN Domain, Presenting a Basis for PYRIN/PYRIN Recognition, Journal of Molecular Biology, 2003, 332, 1155-1163.Google Scholar

  • [21] de Alba E., Structure and interdomain dynamics of apoptosisassociated speck-like protein containing a CARD (ASC), J Biol Chem, 2009, 284, 32932-32941.Google Scholar

  • [22] Faustin B., Lartigue L., Bruey J.-M., Luciano F., Sergienko E., Bailly-Maitre B., Volkmann N., Hanein D., Rouiller I., Reed J.C., Reconstituted NALP1 Inflammasome Reveals Two-Step Mechanism of Caspase-1 Activation, Molecular Cell, 2007, 25, 713-724.CrossrefGoogle Scholar

  • [23] Mariathasan S., Newton K., Monack D.M., Vucic D., French D.M., Lee W.P., Roose-Girma M., Erickson S., Dixit V.M., Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf, Nature, 2004, 430, 213-218.Google Scholar

  • [24] Proell M., Gerlic M., Mace P.D., Reed J.C., Riedl S.J., The CARD plays a critical role in ASC foci formation and inflammasome signalling, Biochem J, 2013, 449, 613-621.Google Scholar

  • [25] Masumoto J., Taniguchi S., Sagara J., Pyrin N-terminal homology domain- and caspase recruitment domaindependent oligomerization of ASC, Biochem Biophys Res Commun, 2001, 280, 652-655.Google Scholar

  • [26] Moriya M., Taniguchi S., Wu P., Liepinsh E., Otting G., Sagara J., Role of Charged and Hydrophobic Residues in the Oligomerization of the PYRIN Domain of ASC, Biochemistry, 2005, 44, 575-583.CrossrefGoogle Scholar

  • [27] Qin H., Srinivasula S.M., Wu G., Fernandes-Alnemri T., Alnemri E.S., Shi Y., Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1, Nature, 1999, 399, 549-557.Google Scholar

  • [28] Kersse K., Verspurten J., Berghe T.V., Vandenabeele P., The death-fold superfamily of homotypic interaction motifs, Trends in Biochemical Sciences, 2011, 36, 541-552. 29] Ferrao R., Wu H., Helical assembly in the death domain (DD) superfamily, Curr Opin Struct Biol, 2012, 22, 241-247.CrossrefGoogle Scholar

  • [30] Koradi R., Billeter M., Wuthrich K., MOLMOL: A program for display and analysis of macromolecular structures, Journal of Molecular Graphics, 1996, 14, 51-55.CrossrefGoogle Scholar

  • [31] Yu X., Acehan D., Menetret J.-F.o., Booth C.R., Ludtke S.J., Riedl S.J., Shi Y., Wang X., Akey C.W., A Structure of the Human Apoptosome at 12.8 A Resolution Provides Insights into This Cell Death Platform, Structure, 2005, 13, 1725-1735.CrossrefGoogle Scholar

  • [32] Peisley A., Wu B., Xu H., Chen Z.J., Hur S., Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I, Nature, 2014, 509, 110-114.Google Scholar

  • [33] Kersse K., Lamkanfi M., Bertrand M.J., Vanden Berghe T., Vandenabeele P., Interaction patches of procaspase-1 caspase recruitment domains (CARDs) are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor kappaB signaling, J Biol Chem, 2011, 286, 35874-35882.Google Scholar

  • [34] Acehan D., Jiang X., Morgan D.G., Heuser J.E., Wang X., Akey C.W., Three-Dimensional Structure of the Apoptosome: Implications for Assembly, Procaspase-9 Binding, and Activation, Molecular Cell, 2002, 9, 423-432.CrossrefGoogle Scholar

  • [35] Yuan S., Yu X., Topf M., Ludtke S.J., Wang X., Akey C.W., Structure of an Apoptosome-Procaspase-9 CARD Complex, Structure, 2010, 18, 571-583.CrossrefGoogle Scholar

  • [36] Yuan S., Yu X., Asara J.M., Heuser J.E., Ludtke S.J., Akey C.W., The Holo-Apoptosome: Activation of Procaspase-9 and Interactions with Caspase-3, Structure, 2011, 19, 1084-1096.CrossrefGoogle Scholar

  • [37] Yuan S., Yu X., Topf M., Dorstyn L., Kumar S., Ludtke S.J., Akey C.W., Structure of the Drosophila apoptosome at 6.9 a resolution, Structure, 2011, 19, 128-140.Google Scholar

  • [38] Qi S., Pang Y., Hu Q., Liu Q., Li H., Zhou Y., He T., Liang Q., Liu Y., Yuan X., et al., Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4, Cell, 2010, 141, 446-457.Google Scholar

  • [39] Hofmann K., The modular nature of apoptotic signaling proteins, Cell Mol Life Sci, 1999, 55, 1113-1128.CrossrefGoogle Scholar

  • [40] Riedl S.J., Li W., Chao Y., Schwarzenbacher R., Shi Y., Structure of the apoptotic protease-activating factor 1 bound to ADP, Nature, 2005, 434, 926-933.Google Scholar

  • [41] Yuan S., Topf M., Reubold T.F., Eschenburg S., Akey C.W., Changes in Apaf-1 Conformation That Drive Apoptosome Assembly, Biochemistry, 2013, 52, 2319-2327.CrossrefGoogle Scholar

  • [42] Lu A., Magupalli V.G., Ruan J., Yin Q., Atianand M.K., Vos M.R., Schroder G.F., Fitzgerald K.A., Wu H., Egelman E.H., Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes, Cell, 2014, 156, 1193-1206.Google Scholar

  • [43] Le H.T., Harton J.A., Pyrin- and CARD-only Proteins as Regulators of NLR Functions, Front Immunol, 2013, 4, 275.Google Scholar

  • [44] Chen S., Sun B., Negative regulation of NLRP3 inflammasome signaling, Protein Cell, 2013, 4, 251-258.CrossrefGoogle Scholar

  • [45] Srimathi T., Robbins S.L., Dubas R.L., Chang H., Cheng H., Roder H., Park Y.C., Mapping of POP1-binding site on pyrin domain of ASC, J Biol Chem, 2008, 283, 15390-15398.Google Scholar

  • [46] Park H., PYRIN domains and their interactions in the apoptosis and inflammation signaling pathway, Apoptosis, 2012, 17, 1247-1257.CrossrefGoogle Scholar

  • [47] Vajjhala P.R., Mirams R.E., Hill J.M., Multiple Binding Sites on the Pyrin Domain of ASC Protein Allow Self-association and Interaction with NLRP3 Protein, Journal of Biological Chemistry, 2012, 287, 41732-41743.Google Scholar

  • [48] Cai X., Chen J., Xu H., Liu S., Jiang Q.X., Halfmann R., Chen Z.J., Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation, Cell, 2014, 156, 1207-1222.Google Scholar

  • [49] Ruland J., Inflammasome: putting the pieces together, Cell, 2014, 156, 1127-1129.Google Scholar

  • [50] Peisley A., Lin C., Wu B., Orme-Johnson M., Liu M., Walz T., Hur S., Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition, Proc Natl Acad Sci U S A, 2011, 108, 21010-21015.CrossrefGoogle Scholar

  • [51] Berke I.C., Yu X., Modis Y., Egelman E.H., MDA5 assembles into a polar helical filament on dsRNA, Proc Natl Acad Sci U S A, 2012, 109, 18437-18441.Google Scholar

  • [52] Peisley A., Wu B., Yao H., Walz T., Hur S., RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitinindependent manner, Mol Cell, 2013, 51, 573-583.CrossrefGoogle Scholar

  • [53] Wu B., Peisley A., Richards C., Yao H., Zeng X., Lin C., Chu F., Walz T., Hur S., Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5, Cell, 2013, 152, 276-289.Google Scholar

  • [54] Hou F., Sun L., Zheng H., Skaug B., Jiang Q.X., Chen Z.J., MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response, Cell, 2011, 146, 448-461.Google Scholar

  • [55] Xu H., He X., Zheng H., Huang L.J., Hou F., Yu Z., de la Cruz M.J., Borkowski B., Zhang X., Chen Z.J., et al., Structural basis for the prion-like MAVS filaments in antiviral innate immunity, Elife, 2014, 3, e01489.Google Scholar

  • [56] Qiao Q., Yang C., Zheng C., Fontan L., David L., Yu X., Bracken C., Rosen M., Melnick A., Egelman E.H., et al., Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly, Mol Cell, 2013, 51, 766-779.Google Scholar

  • [57] Case C.L., Roy C.R., Asc modulates the function of NLRC4 in response to infection of macrophages by Legionella pneumophila, MBio, 2011, 2CrossrefGoogle Scholar

  • [58] Broz P., Newton K., Lamkanfi M., Mariathasan S., Dixit V.M., Monack D.M., Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella, J Exp Med, 2010, 207, 1745-1755.Google Scholar

  • [59] Halff E.F., Diebolder C.A., Versteeg M., Schouten A., Brondijk T.H., Huizinga E.G., Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin, J Biol Chem, 2012, 287, 38460-38472.Google Scholar

  • [60] Fernandez I., Ying Y., Albanesi J., Anderson R.G., Mechanism of caveolin filament assembly, Proc Natl Acad Sci U S A, 2002, 99, 11193-11198.Google Scholar

  • [61] Sauvageau S., Stasiak A.Z., Banville I., Ploquin M., Stasiak A., Masson J.Y., Fission yeast rad51 and dmc1, two efficient DNA recombinases forming helical nucleoprotein filaments, Mol Cell Biol, 2005, 25, 4377-4387.Google Scholar

  • [62] McIlwraith M.J., Hall D.R., Stasiak A.Z., Stasiak A., Wigley D.B., West S.C., RadA protein from Archaeoglobus fulgidus forms rings, nucleoprotein filaments and catalyses homologous recombination, Nucleic Acids Res, 2001, 29, 4509-4517. CrossrefGoogle Scholar

  • [63] Yang S., Yu X., Seitz E.M., Kowalczykowski S.C., Egelman E.H., Archaeal RadA protein binds DNA as both helical filaments and octameric rings, J Mol Biol, 2001, 314, 1077-1085.Google Scholar

  • [64] Jin C., Flavell R.A., Molecular mechanism of NLRP3 inflammasome activation, J Clin Immunol, 2010, 30, 628-631.CrossrefGoogle Scholar

  • [65] Davis B.K., Wen H., Ting J.P.-Y., The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases, Annual Review of Immunology, 2011, 29, 707-735.CrossrefGoogle Scholar

  • [66] McWilliam H., Li W., Uludag M., Squizzato S., Park Y.M., Buso N., Cowley A.P., Lopez R., Analysis Tool Web Services from the EMBL-EBI, Nucleic Acids Res, 2013, 41, W597-600. CrossrefGoogle Scholar

About the article

Received: 2014-03-13

Accepted: 2014-08-19

Published Online: 2014-09-19


Citation Information: Inflammasome, ISSN (Online) 2300-102X, DOI: https://doi.org/10.2478/infl-2014-0005.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in