Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Pelegrin, Pablo

Ed. by Lopez-Castejón, Gloria

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Insights into assembly of the macromolecular inflammasome complex

Tom P. Monie
  • Corresponding author
  • Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
  • Departments of Biochemistry and Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joseph P. Boyle
  • Corresponding author
  • Departments of Biochemistry and Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-23 | DOI: https://doi.org/10.2478/infl-2014-0009


Dramatic advances in our understanding of the ultrastructure of the inflammasome and the molecular interactions involved in its assembly have recently been made. The adaptor protein ASC has been proposed to display prion-like activity that results in the formation of filamentous structures in the cell. These filamentouos structures can subsequently become inflammatory themselves if released into the extracellular space and then phagocytosed. Various groups have now utilised a variety of microscopy and structural approaches in order to visualise components of, and indeed the entire, inflammasome in both endogenous and overexpression systems. In this brief review we draw upon these new pieces of work to describe how our understanding of the global structure of the inflammasome has progressed in light of these new observations. In particular we begin by providing an initial perspective on the possible formation of small circular, wheel-like, oligomers resembling apoptosomes. We then address the current view that inflammasomes result from the formation of a much larger complex which may involve polymeric filaments. We discuss how these developments fit with recent theories of inflammatory signalling, what questions these advances raise, and propose key areas for further investigation.

Keywords : ASC; filament; death domain; innate immunity; NLRP3; AIM2; NLRC4; NLR; CARD; caspase-1


  • [1] Salvesen GS., Dixit VM., Caspase activation: the inducedproximity model., Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 10964–7 Google Scholar

  • [2] Lamkanfi M., Dixit VM., Mechanisms and functions of inflammasomes., Cell., Elsevier Inc.;, 2014, 157, 1013–22 Google Scholar

  • [3] Wen H., Miao EA., Ting JP-Y., Mechanisms of NOD-like receptorassociated inflammasome activation., Immunity., Elsevier Inc.;, 2013, 39, 432–41 CrossrefGoogle Scholar

  • [4] Latz E., Xiao TS., Stutz A., Activation and regulation of the inflammasomes, Nat. Rev. Immunol., 2013, 13, 397–411 PubMedCrossrefGoogle Scholar

  • [5] Cheng J., Waite AL., Tkaczyk ER., Ke K., Richards N., Hunt AJ., et al., Kinetic properties of ASC protein aggregation in epithelial cells., J. Cell. Physiol., 2010, 222, 738–47 Google Scholar

  • [6] Case CL., Roy CR., Asc modulates the function of NLRC4 in response to infection of macrophages by Legionella pneumophila., MBio., 2011, 2, e00117–11 Google Scholar

  • [7] Zhong Y., Kinio A., Saleh M., Functions of NOD-Like Receptors in Human Diseases., Front. Immunol., 2013, 4, 333 PubMedGoogle Scholar

  • [8] Dinarello CA., van der Meer JWM., Treating inflammation by blocking interleukin-1 in humans., Semin. Immunol., Elsevier Ltd;, 2013, 25, 469–84 CrossrefGoogle Scholar

  • [9] Acehan D., Jiang X., Morgan DG., Heuser JE., Wang X., Akey CW., Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation., Mol. Cell., 2002, 9, 423–32 PubMedCrossrefGoogle Scholar

  • [10] Faustin B., Lartigue L., Bruey J., Luciano F., Sergienko E., Bailly- Maitre B., et al., Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation., Mol. Cell., 2007, 25, 713–24 CrossrefGoogle Scholar

  • [11] Halff EF., Diebolder CA., Versteeg M., Schouten A., Brondijk THC., Huizinga EG., Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin., J. Biol. Chem., 2012, 287, 38460–72 Google Scholar

  • [12] Alba E de., Santiveri CM., Oroz J., A ring-like model for ASC self-association via the CARD domain, Inflammasome., 2014, 1, 1639–41 Google Scholar

  • [13] Mótyán JA., Bagossi P., Benkő S., Tőzsér J., A molecular model of the full-length human NOD-like receptor family CARD domain containing 5 (NLRC5) protein., BMC Bioinformatics., 2013, 14, 275 CrossrefGoogle Scholar

  • [14] Park HH., Logette E., Raunser S., Cuenin S., Walz T., Tschopp J., et al., Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex., Cell., 2007, 128, 533–46 Google Scholar

  • [15] Lin S-C., Lo Y-C., Wu H., Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling., Nature., 2010, 465, 885–90 Google Scholar

  • [16] Kersse K., Verspurten J., Vanden Berghe T., Vandenabeele P., The death-fold superfamily of homotypic interaction motifs., Trends Biochem. Sci., Elsevier Ltd;, 2011, 36, 541–52 CrossrefGoogle Scholar

  • [17] Jin T., Perry A., Smith P., Jiang J., Xiao TS., Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly., J. Biol. Chem., 2013, 288, 13225–35 Google Scholar

  • [18] Kersse K., Lamkanfi M., Bertrand MJM., Vanden Berghe T., Vandenabeele P., Interaction patches of procaspase-1 caspase recruitment domains (CARDs) are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor κB signaling., J. Biol. Chem., 2011, 286, 35874–82 Google Scholar

  • [19] Proell M., Gerlic M., Mace PD., Reed JC., Riedl SJ., The CARD plays a critical role in ASC foci formation and inflammasome signalling., Biochem. J., 2013, 449, 613–21 Google Scholar

  • [20] Vajjhala PR., Mirams RE., Hill JM., Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein., J. Biol. Chem., 2012, 287, 41732–43 Google Scholar

  • [21] Vajjhala PR., Kaiser S., Smith SJ., Ong Q-R., Soh SL., Stacey KJ., et al., Identification of multifaceted binding modes for pyrin and ASC pyrin domains gives insights into pyrin inflammasome assembly., J. Biol. Chem., 2014, 289, 23504–19 Google Scholar

  • [22] Hiller S., Kohl A., Fiorito F., Herrmann T., Wider G., Tschopp J., et al., NMR Structure of the Apoptosis- and Inflammation-Related NALP1 Pyrin Domain, Structure., 2003, 11, 1199–205 Google Scholar

  • [23] Bae JY., Park HH., Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly., J. Biol. Chem., 2011, 286, 39528–36 Google Scholar

  • [24] Lu A., Kabaleeswaran V., Fu T., Magupalli VG., Wu H., Crystal structure of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED interactions., J. Mol. Biol., Elsevier Ltd;, 2014, 426, 1420–7 Google Scholar

  • [25] Lu A., Magupalli VG., Ruan J., Yin Q., Atianand MK., Vos MR., et al., Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes., Cell., 2014, 156, 1193–206 Google Scholar

  • [26] Liepinsh E., Barbals R., Dahl E., Sharipo A., Staub E., Otting G., The Death-domain Fold of the ASC PYRIN Domain, Presenting a Basis for PYRIN/PYRIN Recognition, J. Mol. Biol., 2003, 332, 1155–63 Google Scholar

  • [27] Jin T., Curry J., Smith P., Jiang J., Xiao TS., Structure of the NLRP1 caspase recruitment domain suggests potential mechanisms for its association with procaspase-1., Proteins., 2013, 81, 1266–70 Google Scholar

  • [28] De Alba E., Structure and interdomain dynamics of apoptosisassociated speck-like protein containing a CARD (ASC)., J. Biol. Chem., 2009, 284, 32932–41 Google Scholar

  • [29] Hu Z., Yan C., Liu P., Huang Z., Ma R., Zhang C., et al., Crystal structure of NLRC4 reveals its autoinhibition mechanism., Science., 2013, 341, 172–5 Google Scholar

  • [30] Reubold TF., Hahne G., Wohlgemuth S., Eschenburg S., Crystal structure of the leucine-rich repeat domain of the NOD-like receptor NLRP1: Implications for binding of muramyl dipeptide., FEBS Lett., Federation of European Biochemical Societies;, 2014, 588, 3327–32 Google Scholar

  • [31] Jin T., Perry A., Jiang J., Smith P., Curry JA., Unterholzner L., et al., Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor., Immunity., Elsevier Inc.;, 2012, 36, 561–71 CrossrefGoogle Scholar

  • [32] Ru H., Ni X., Zhao L., Crowley C., Ding W., Hung L-W., et al., Structural basis for termination of AIM2-mediated signaling by p202., Cell Res., 2013, 23, 855–8 Google Scholar

  • [33] Cai X., Chen J., Xu H., Liu S., Jiang Q-X., Halfmann R., et al., Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation., Cell., Elsevier Inc.;, 2014, 156, 1207–22 Google Scholar

  • [34] Baroja-Mazo A., Martín-Sánchez F., Gomez AI., Martínez CM., Amores-Iniesta J., Compan V., et al., The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response., Nat. Immunol., 2014, 15, 738–48 CrossrefGoogle Scholar

  • [35] Franklin BS., Bossaller L., De Nardo D., Ratter JM., Stutz A., Engels G., et al., The adaptor ASC has extracellular and “prionoid” activities that propagate inflammation., Nat. Immunol., 2014, 15, 727–37 CrossrefGoogle Scholar

  • [36] Masumoto J., Taniguchi S., Sagara J., Pyrin N-terminal homology domain- and caspase recruitment domaindependent oligomerization of ASC., Biochem. Biophys. Res. Commun., 2001, 280, 652–5 Google Scholar

  • [37] Qiao Q., Yang C., Zheng C., Fontán L., David L., Yu X., et al., Structural Architecture of the CARMA1/Bcl10/MALT1 Signalosome: Nucleation-Induced Filamentous Assembly, Mol. Cell., 2013, 51, 766–79 CrossrefGoogle Scholar

  • [38] Wu B., Peisley A., Tetrault D., Li Z., Egelman EH., Magor KE., et al., Molecular Imprinting as a Signal-Activation Mechanism of the Viral RNA Sensor RIG-I, Mol. Cell., Elsevier Inc.;, 2014, 55, 511–23 Google Scholar

  • [39] Peisley A., Wu B., Xu H., Chen ZJ., Hur S., Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I., Nature., Nature Publishing Group;, 2014, 509, 110–4 Google Scholar

  • [40] Morrone SR., Wang T., Constantoulakis LM., Hooy RM., Delannoy MJ., Sohn J., Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, E62–71 CrossrefGoogle Scholar

  • [41] Yuan S., Yu X., Asara JM., Heuser JE., Ludtke SJ., Akey CW., The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3., Structure., Elsevier Ltd;, 2011, 19, 1084–96 Google Scholar

  • [42] Qi S., Pang Y., Hu Q., Liu Q., Li H., Zhou Y., et al., Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4., Cell., Elsevier Ltd;, 2010, 141, 446–57 Google Scholar

  • [43] Yuan S., Yu X., Topf M., Dorstyn L., Kumar S., Ludtke SJ., et al., Structure of the Drosophila apoptosome at 6.9 Å resolution., Structure., 2011, 19, 128–40 Google Scholar

  • [44] Poyet JL., Srinivasula SM., Tnani M., Razmara M., Fernandes- Alnemri T., Alnemri ES., Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1., J. Biol. Chem., 2001, 276, 28309–13 Google Scholar

  • [45] Broz P., Newton K., Lamkanfi M., Mariathasan S., Dixit VM., Monack DM., Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella., J. Exp. Med., 2010, 207, 1745–55 Google Scholar

  • [46] Miao EA., Leaf IA., Treuting PM., Mao DP., Dors M., Sarkar A., et al., Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria., Nat. Immunol., Nature Publishing Group;, 2010, 11, 1136–42 Google Scholar

  • [47] Wu H., Higher-order assemblies in a new paradigm of signal transduction., Cell., Elsevier Inc.;, 2013, 153, 287–92 Google Scholar

  • [48] Stutz A., Horvath GL., Monks BG., Latz E., ASC speck formation as a readout for inflammasome activation., Methods Mol. Biol., 2013, 1040, 91–101 Google Scholar

  • [49] Masumoto J., Taniguchi S., Ayukawa K., Sarvotham H., Kishino T., Niikawa N., et al., ASC, a Novel 22-kDa Protein, Aggregates during Apoptosis of Human Promyelocytic Leukemia HL-60 Cells, J. Biol. Chem., 1999, 274, 33835–8 Google Scholar

  • [50] Agostini L., Martinon F., Burns K., McDermott MF., Hawkins PN., Tschopp J., NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder., Immunity., 2004, 20, 319–25 CrossrefGoogle Scholar

  • [51] Man SM., Hopkins LJ., Nugent E., Cox S., Glück IM., Tourlomousis P., et al., Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 7403–8 Google Scholar

  • [52] Aksentijevich I., Nowak M., Mallah M., Chae JJ., Watford WT., Hofmann SR., et al., De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrinassociated autoinflammatory diseases., Arthritis Rheum., 2002, 46, 3340–8 CrossrefGoogle Scholar

  • [53] Richards N., Schaner P., Diaz A., Stuckey J., Shelden E., Wadhwa A., et al., Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis., J. Biol. Chem., 2001, 276, 39320–9 Google Scholar

  • [54] Dickens LS., Boyd RS., Jukes-Jones R., Hughes MA., Robinson GL., Fairall L., et al., A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death., Mol. Cell., Elsevier Inc.;, 2012, 47, 291–305CrossrefGoogle Scholar

About the article

Received: 2014-09-23

Accepted: 2014-11-24

Published Online: 2014-12-23

Citation Information: Inflammasome, ISSN (Online) 2300-102X, DOI: https://doi.org/10.2478/infl-2014-0009.

Export Citation

© 2014 Tom P. Monie, Joseph P. Boyle. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in