Jump to ContentJump to Main Navigation
Show Summary Details
In This Section


Editor-in-Chief: Pelegrin, Pablo

Ed. by Lopez-Castejón, Gloria

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
In This Section

Burn the house, save the day: pyroptosis in pathogen restriction

Dave Boucher
  • Corresponding author
  • Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
/ Kaiwen W. Chen
  • Corresponding author
  • Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
/ Kate Schroder
  • Corresponding author
  • Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
Published Online: 2015-01-14 | DOI: https://doi.org/10.1515/infl-2015-0001


Many programmed cell death pathways are essential for organogenesis, development, immunity and the maintenance of homeostasis in multicellular organisms. Pyroptosis, a highly proinflammatory form of cell death, is a critical innate immune response to prevent intracellular infection. Pyroptosis is induced upon the activation of proinflammatory caspases within macromolecular signalling platforms called inflammasomes. This article reviews our understanding of pyroptosis induction, the function of inflammatory caspases in pyroptosis execution, and the importance of pyroptosis for pathogen clearance. It also highlights the situations in which extensive pyroptosis may in fact be detrimental to the host, leading to immune cell depletion or cytokine storm. Current efforts to understand the beneficial and pathological roles of pyroptosis bring the promise of new approaches to fight infectious diseases.

Keywords : pyroptosis; caspase; inflammasomes; pathogen control; immune evasion


  • [1] Lockshin, R. A., and C. M. William, Programmed Cell Death. 3. Neural Control of the Breakdown of the Intersegmental Muscles of Silkmoths, J. Insect. Physiol., 1965, 11, 601-610

  • [2] Galluzzi, L., I. Vitale, J. M. Abrams, E. S. Alnemri, E. H. Baehrecke, M. V. Blagosklonny, T. M. Dawson, V. L. Dawson, W. S. El-Deiry, S. Fulda, et al., Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ., 2012, 19, 107-120 [Web of Science] [Crossref]

  • [3] Hagar, J. A., and E. A. Miao, Detection of cytosolic bacteria by inflammatory caspases, Curr. Opin. Microbiol., 2014, 17, 61-66 [Crossref] [Web of Science]

  • [4] Zychlinsky, A., M. C. Prevost, and P. J. Sansonetti, Shigella flexneri induces apoptosis in infected macrophages, Nature, 1992, 358, 167-169

  • [5] Monack, D. M., B. Raupach, A. E. Hromockyj, and S. Falkow, Salmonella typhimurium invasion induces apoptosis in infected macrophages, Proc. Natl. Acad. Sci. U S A, 1996, 93, 9833-9838

  • [6] Brennan, M. A., and B. T. Cookson, Salmonella induces macrophage death by caspase-1-dependent necrosis, Mol. Microbiol., 2000, 38, 31-40

  • [7] Cookson, B. T., and M. A. Brennan, Pro-inflammatory programmed cell death, Trends Microbiol., 2001, 9, 113-114 [Crossref]

  • [8] Fuentes-Prior, P., and G. S. Salvesen, The protein structures that shape caspase activity, specificity, activation and inhibition, Biochem. J., 2004, 384, 201-232

  • [9] Schroder, K., and J. Tschopp, The inflammasomes, Cell, 2010, 140, 821-832 [Web of Science]

  • [10] Lamkanfi, M., and V. M. Dixit, Mechanisms and functions of inflammasomes, Cell, 2014, 157, 1013-1022

  • [11] Martinon, F., K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta, Mol. Cell, 2002, 10, 417-426 [Crossref]

  • [12] Martinon, F., and J. Tschopp, Inflammatory caspases and inflammasomes: master switches of inflammation, Cell Death Differ., 2007, 14, 10-22 [Web of Science] [Crossref]

  • [13] MacCorkle, R. A., K. W. Freeman, and D. M. Spencer, Synthetic activation of caspases: artificial death switches, Proc. Natl. Acad. Sci. U S A, 1998, 95, 3655-3660

  • [14] Broz, P., J. von Moltke, J. W. Jones, R. E. Vance, and D. M. Monack, Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing, Cell Host Microbe, 2010, 8, 471-483 [Web of Science]

  • [15] Oberst, A., C. Pop, A. G. Tremblay, V. Blais, J. B. Denault, G. S. Salvesen, and D. R. Green, Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation, J. Biol. Chem., 2010, 285, 16632-16642

  • [16] Chen, K. W., C. J. Gross, F. V. Sotomayor, K. J. Stacey, J. Tschopp, M. J. Sweet, and K. Schroder, The neutrophil NLRC4 inflammasome selectively promotes IL-1beta maturation without pyroptosis during acute Salmonella challenge, Cell Rep., 2014, 8, 570-582 [Web of Science]

  • [17] Kayagaki, N., M. T. Wong, I. B. Stowe, S. R. Ramani, L. C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W. P. Lee, A. Muszynski, et al., Noncanonical inflammasome activation by intracellular LPS independent of TLR4, Science, 2013, 341, 1246-1249 [Web of Science]

  • [18] Hagar, J. A., D. A. Powell, Y. Aachoui, R. K. Ernst, and E. A. Miao, Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock, Science, 2013, 341, 1250-1253 [Web of Science]

  • [19] Rathinam, V. A., S. K. Vanaja, L. Waggoner, A. Sokolovska, C. Becker, L. M. Stuart, J. M. Leong, and K. A. Fitzgerald, TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria, Cell, 2012, 150, 606-619

  • [20] Shi, J., Y. Zhao, Y. Wang, W. Gao, J. Ding, P. Li, L. Hu, and F. Shao, Inflammatory caspases are innate immune receptors for intracellular LPS, Nature, 2014, 514, 187-192 [Web of Science]

  • [21] Knodler, L. A., S. M. Crowley, H. P. Sham, H. Yang, M. Wrande, C. Ma, R. K. Ernst, O. Steele-Mortimer, J. Celli, and B. A. Vallance, Noncanonical inflammasome activation of caspase-4/ caspase-11 mediates epithelial defenses against enteric bacterial pathogens, Cell Host Microbe, 2014, 16, 249-256 [Web of Science]

  • [22] Kajiwara, Y., T. Schiff, G. Voloudakis, M. A. Gama Sosa, G. Elder, O. Bozdagi, and J. D. Buxbaum, A critical role for human caspase-4 in endotoxin sensitivity, J. Immunol., 2014, 193, 335-343 [Web of Science]

  • [23] Franchi, L., N. Kamada, Y. Nakamura, A. Burberry, P. Kuffa, S. Suzuki, M. H. Shaw, Y. G. Kim, and G. Nunez, NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense, Nat. Immunol., 2012, 13, 449-456 [Web of Science]

  • [24] Miao, E. A., I. A. Leaf, P. M. Treuting, D. P. Mao, M. Dors, A. Sarkar, S. E. Warren, M. D. Wewers, and A. Aderem, Caspase- 1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria, Nat. Immunol., 2010, 11, 1136-1142 [Web of Science]

  • [25] Raupach, B., S. K. Peuschel, D. M. Monack, and A. Zychlinsky, Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection, Infect. Immun., 2006, 74, 4922-4926

  • [26] Oppenheim, J. J., P. Tewary, G. de la Rosa, and D. Yang, Alarmins initiate host defense, Adv. Exp. Med. Biol., 2007, 601, 185-194

  • [27] Said-Sadier, N., and D. M. Ojcius, Alarmins, inflammasomes and immunity, Biomed. J., 2012, 35, 437-449

  • [28] Moussion, C., N. Ortega, and J. P. Girard, The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’?, PLoS One, 2008, 3, e3331

  • [29] Scaffidi, P., T. Misteli, and M. E. Bianchi, Release of chromatin protein HMGB1 by necrotic cells triggers inflammation, Nature, 2002, 418, 191-195 [Web of Science]

  • [30] Bergsbaken, T., S. L. Fink, and B. T. Cookson, Pyroptosis: host cell death and inflammation, Nat. Rev. Microbiol., 2009, 7, 99-109 [Web of Science]

  • [31] Franklin, B. S., L. Bossaller, D. De Nardo, J. M. Ratter, A. Stutz, G. Engels, C. Brenker, M. Nordhoff, S. R. Mirandola, A. Al-Amoudi, et al., The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation, Nat. Immunol., 2014, 15, 727-737 [Web of Science]

  • [32] Baroja-Mazo, A., F. Martin-Sanchez, A. I. Gomez, C. M. Martinez, J. Amores-Iniesta, V. Compan, M. Barbera- Cremades, J. Yague, E. Ruiz-Ortiz, J. Anton, et al., The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response, Nat. Immunol., 2014, 15, 738-748 [Web of Science]

  • [33] Bergsbaken, T., S. L. Fink, A. B. den Hartigh, W. P. Loomis, and B. T. Cookson, Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation, J. Immunol., 2011, 187, 2748-2754 [Web of Science]

  • [34] Mansour, S. C., O. M. Pena, and R. E. Hancock, Host defense peptides: front-line immunomodulators, Trends Immunol., 2014, 35, 443-450 [Web of Science] [Crossref]

  • [35] Sellin, M. E., A. A. Muller, B. Felmy, T. Dolowschiak, M. Diard, A. Tardivel, K. M. Maslowski, and W. D. Hardt, Epitheliumintrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa, Cell Host Microbe, 2014, 16, 237-248 [Web of Science]

  • [36] LaRock, C. N., and B. T. Cookson, The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing, Cell Host Microbe, 2012, 12, 799-805 [Web of Science] [Crossref]

  • [37] Kobayashi, T., M. Ogawa, T. Sanada, H. Mimuro, M. Kim, H. Ashida, R. Akakura, M. Yoshida, M. Kawalec, J. M. Reichhart, et al., The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection, Cell Host Microbe, 2013, 13, 570-583 [Web of Science]

  • [38] Upton, J. W., and F. K. Chan, Staying alive: cell death in antiviral immunity, Mol. Cell, 2014, 54, 273-280 [Web of Science]

  • [39] Lamkanfi, M., and V. M. Dixit, Modulation of inflammasome pathways by bacterial and viral pathogens, J. Immunol., 2011, 187, 597-602

  • [40] Sagulenko, V., S. J. Thygesen, D. P. Sester, A. Idris, J. A. Cridland, P. R. Vajjhala, T. L. Roberts, K. Schroder, J. E. Vince, J. M. Hill, et al., AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC, Cell Death Differ., 2013, 20, 1149-1160 [Crossref] [Web of Science]

  • [41] Aachoui, Y., V. Sagulenko, E. A. Miao, and K. J. Stacey, Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection, Curr. Opin. Microbiol., 2013, 16, 319-326 [Crossref] [Web of Science]

  • [42] Gottlieb, M. S., R. Schroff, H. M. Schanker, J. D. Weisman, P. T. Fan, R. A. Wolf, and A. Saxon, Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency, N. Engl. J. Med., 1981, 305, 1425-1431

  • [43] Doitsh, G., N. L. Galloway, X. Geng, Z. Yang, K. M. Monroe, O. Zepeda, P. W. Hunt, H. Hatano, S. Sowinski, I. Munoz-Arias, et al., Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection, Nature, 2014, 505, 509-514 [Web of Science]

  • [44] Monroe, K. M., Z. Yang, J. R. Johnson, X. Geng, G. Doitsh, N. J. Krogan, and W. C. Greene, IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV, Science, 2014, 343, 428-432 [Web of Science]

  • [45] Okoye, A. A., and L. J. Picker, CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure, Immunol. Rev., 2013, 254, 54-64 [Web of Science]

  • [46] Masters, S. L., M. Gerlic, D. Metcalf, S. Preston, M. Pellegrini, J. A. O’Donnell, K. McArthur, T. M. Baldwin, S. Chevrier, C. J. Nowell, et al., NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells, Immunity, 2012, 37, 1009-1023 [Web of Science]

  • [47] Croker, B. A., J. A. O’Donnell, and M. Gerlic, Pyroptotic death storms and cytopenia, Curr. Opin. Immunol., 2014, 26, 128-137 [Web of Science] [Crossref]

  • [48] von Moltke, J., N. J. Trinidad, M. Moayeri, A. F. Kintzer, S. B. Wang, N. van Rooijen, C. R. Brown, B. A. Krantz, S. H. Leppla, K. Gronert, et al., Rapid induction of inflammatory lipid mediators by the inflammasome in vivo, Nature, 2012, 490, 107-111 [Web of Science]

  • [49] Schroder, K., K. M. Irvine, M. S. Taylor, N. J. Bokil, K. A. Le Cao, K. A. Masterman, L. I. Labzin, C. A. Semple, R. Kapetanovic, L. Fairbairn, et al., Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages, Proc. Natl. Acad. Sci. U S A, 2012, 109, E944-953 [Web of Science]

About the article

Received: 2014-10-20

Accepted: 2014-12-04

Published Online: 2015-01-14

Published in Print: 2016-01-01

Citation Information: Inflammasome, ISSN (Online) 2300-102X, DOI: https://doi.org/10.1515/infl-2015-0001. Export Citation

© 2015 Dave Boucher et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in