Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Editor-in-Chief: Pelegrin, Pablo

Ed. by Lopez-Castejón, Gloria

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Vitamin C inhibits the activation of the NLRP3 inflammasome by scavenging mitochondrial ROS

Xuesong Sang
  • School of Life Sciences, Shanghai University, Shanghai, 200444, China
/ Hongbin Wang
  • Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
/ Yihui Chen
  • Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
/ Qiuhong Guo
  • Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
/ Ailing Lu
  • Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
/ Xiaoli Zhu
  • School of Life Sciences, Shanghai University, Shanghai, 200444, China
/ Guangxun Meng
  • Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
Published Online: 2016-03-18 | DOI: https://doi.org/10.1515/infl-2016-0001


Inflammasomes are intracellular protein complexes that mediate maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18. Inflammasomes have been connected with various diseases, therefore the regulation of inflammasome activation is important for the development of novel therapies for many inflammatory syndromes. Vitamin C is an essential nutrient and has regulatory effects on immune cells. Here we report that vitamin C has an inhibitory effect on the activation of the NLRP3 inflammasome in vitro and in vivo. Mechanistically, this inhibition is through scavenging mitochondrial ROS but not through NF-κB inhibition. Moreover, specificity tests show that the AIM2 inflammasome and the NLRC4 inflammasome can also be inhibited by vitamin C. Our results have thus identified a new inflammasome regulator and provide therapeutic potential for inflammasome-associated diseases.

Keywords : Vitamin C; Inflammasome; NLRP3; AIM2; NLRC4


  • [1] Englard S., Seifter S., The biochemical functions of ascorbic acid, Annual review of nutrition, 1986, 6, 365-406. Google Scholar

  • [2] Beyer R.E., The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q, Journal of bioenergetics and biomembranes, 1994, 26, 349-358. Google Scholar

  • [3] Rice M.E., Ascorbate regulation and its neuroprotective role in the brain, Trends in neurosciences, 2000, 23, 209-216. Google Scholar

  • [4] Hediger M.A., New view at C, Nature medicine, 2002, 8, 445-446. Web of ScienceGoogle Scholar

  • [5] Mao K., Chen S., Chen M., Ma Y., Wang Y., Huang B., He Z., Zeng Y., Hu Y., Sun S., et al., Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock, Cell research, 2013, 23, 201-212. Google Scholar

  • [6] Fisher B.J., Kraskauskas D., Martin E.J., Farkas D., Puri P., Massey H.D., Idowu M.O., Brophy D.F., Voelkel N.F., Fowler A.A., 3rd, et al., Attenuation of sepsis-induced organ injury in mice by vitamin C, JPEN. Journal of parenteral and enteral nutrition, 2014, 38, 825-839. Google Scholar

  • [7] Berger M.M., Oudemans-van Straaten H.M., Vitamin C supplementation in the critically ill patient, Current opinion in clinical nutrition and metabolic care, 2015, 18, 193-201. Google Scholar

  • [8] Matsuda A., Jacob A., Wu R., Aziz M., Yang W.L., Matsutani T., Suzuki H., Furukawa K., Uchida E., Wang P., Novel therapeutic targets for sepsis: regulation of exaggerated inflammatory responses, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi, 2012, 79, 4-18. Google Scholar

  • [9] Chen M., Wang H., Chen W., Meng G., Regulation of adaptive immunity by the NLRP3 inflammasome, Int Immunopharmacol, 2011, 11, 549-554. CrossrefGoogle Scholar

  • [10] Schroder K., Tschopp J., The inflammasomes, Cell, 2010, 140, 821-832. Web of ScienceGoogle Scholar

  • [11] Davis B.K., Wen H., Ting J.P., The inflammasome NLRs in immunity, inflammation, and associated diseases, Annual review of immunology, 2011, 29, 707-735. Web of ScienceGoogle Scholar

  • [12] de Zoete M.R., Palm N.W., Zhu S., Flavell R.A., Inflammasomes, Cold Spring Harbor perspectives in biology, 2014, Google Scholar

  • [13] Franchi L., Munoz-Planillo R., Nunez G., Sensing and reacting to microbes through the inflammasomes, Nature immunology, 2012, 13, 325-332. Web of ScienceGoogle Scholar

  • [14] Lu A., Magupalli V.G., Ruan J., Yin Q., Atianand M.K., Vos M.R., Schroder G.F., Fitzgerald K.A., Wu H., Egelman E.H., Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes, Cell, 2014, 156, 1193-1206. Google Scholar

  • [15] Shi J., Zhao Y., Wang K., Shi X., Wang Y., Huang H., Zhuang Y., Cai T., Wang F., Shao F., Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death, Nature, 2015, Web of ScienceGoogle Scholar

  • [16] Kayagaki N., Stowe I.B., Lee B.L., O’Rourke K., Anderson K., Warming S., Cuellar T., Haley B., Roose-Girma M., Phung Q.T., et al., Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling, Nature, 2015, Web of ScienceGoogle Scholar

  • [17] Dan Dunn J., Alvarez L.A., Zhang X., Soldati T., Reactive oxygen species and mitochondria: A nexus of cellular homeostasis, Redox Biol, 2015, 6, 472-485. CrossrefWeb of ScienceGoogle Scholar

  • [18] Mohammed B.M., Fisher B.J., Huynh Q.K., Wijesinghe D.S., Chalfant C.E., Brophy D.F., Fowler A.A., 3rd, Natarajan R., Resolution of sterile inflammation: role for vitamin C, Mediators of inflammation, 2014, 2014, 173403. Google Scholar

  • [19] Wang H., Lei X., Xiao X., Yang C., Lu W., Huang Z., Leng Q., Jin Q., He B., Meng G., et al., Reciprocal Regulation between Enterovirus 71 and the NLRP3 Inflammasome, Cell reports, 2015, 12, 42-48. Google Scholar

  • [20] Xu Y., Li H., Chen W., Yao X., Xing Y., Wang X., Zhong J., Meng G., Mycoplasma hyorhinis activates the NLRP3 inflammasome and promotes migration and invasion of gastric cancer cells, PloS one, 2013, 8, e77955. Google Scholar

  • [21] Chen M., Xing Y., Lu A., Fang W., Sun B., Chen C., Liao W., Meng G., Internalized Cryptococcus neoformans Activates the Canonical Caspase-1 and the Noncanonical Caspase-8 Inflammasomes, J Immunol, 2015, Web of ScienceGoogle Scholar

  • [22] Mao K., Chen S., Wang Y., Zeng Y., Ma Y., Hu Y., Zhang H., Sun S., Wu X., Meng G., et al., beta-arrestin1 is critical for the full activation of NLRP3 and NLRC4 inflammasomes, Journal of immunology, 2015, 194, 1867-1873. Web of ScienceGoogle Scholar

  • [23] Bowie A.G., O’Neill L.A., Vitamin C inhibits NF-kappa B activation by TNF via the activation of p38 mitogen-activated protein kinase, Journal of immunology, 2000, 165, 7180-7188. Google Scholar

  • [24] Huang Y.N., Lai C.C., Chiu C.T., Lin J.J., Wang J.Y., L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-kappaB translocation in cortical neurons/glia Cocultures, PloS one, 2014, 9, e97276. Google Scholar

  • [25] Novo E., Parola M., Redox mechanisms in hepatic chronic wound healing and fibrogenesis, Fibrogenesis & tissue repair, 2008, 1, 5. Google Scholar

  • [26] Wu F., Schuster D.P., Tyml K., Wilson J.X., Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells, Free radical biology & medicine, 2007, 42, 124-131. Google Scholar

  • [27] Zhou R., Yazdi A.S., Menu P., Tschopp J., A role for mitochondria in NLRP3 inflammasome activation, Nature, 2011, 469, 221-225. Google Scholar

  • [28] Deutschman C.S., Tracey K.J., Sepsis: current dogma and new perspectives, Immunity, 2014, 40, 463-475. Web of ScienceCrossrefGoogle Scholar

  • [29] Wilson J.X., Wu F., Vitamin C in sepsis, Sub-cellular biochemistry, 2012, 56, 67-83. Google Scholar

  • [30] Hara H., Tsuchiya K., Kawamura I., Fang R., Hernandez-Cuellar E., Shen Y., Mizuguchi J., Schweighoffer E., Tybulewicz V., Mitsuyama M., Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity, Nature immunology, 2013, 14, 1247-1255. Web of ScienceGoogle Scholar

  • [31] Case C.L., Shin S., Roy C.R., Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila, Infection and immunity, 2009, 77, 1981-1991. Web of ScienceGoogle Scholar

  • [32] Broz P., von Moltke J., Jones J.W., Vance R.E., Monack D.M., Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing, Cell host & microbe, 2010, 8, 471-483. Google Scholar

  • [33] Wen H., Ting J.P., O’Neill L.A., A role for the NLRP3 inflammasome in metabolic diseases--did Warburg miss inflammation?, Nature immunology, 2012, 13, 352-357. Web of ScienceGoogle Scholar

  • [34] Masters S.L., Simon A., Aksentijevich I., Kastner D.L., Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*), Annual review of immunology, 2009, 27, 621-668. Web of ScienceGoogle Scholar

About the article

Received: 2015-11-10

Accepted: 2016-01-10

Published Online: 2016-03-18

Citation Information: Inflammasome, ISSN (Online) 2300-102X, DOI: https://doi.org/10.1515/infl-2016-0001.

Export Citation

© 2016 Xuesong Sang, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in