Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Innovative Neurosurgery

See all formats and pricing
More options …

Part I: The challenge of functional preservation: an integrated systems approach using diffusion-weighted, image-guided, exoscopic-assisted, transulcal radial corridors

Amin B. Kassam
  • Corresponding author
  • Aurora Neuroscience Innovation Institute, Aurora St. Luke’s Medical Center, Milwaukee, WI, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed A. Labib
  • Aurora Neuroscience Innovation Institute, Aurora St. Luke’s Medical Center, Milwaukee, WI, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammed Bafaquh / Diana Ghinda / Joseph Mark / David Houlden / Melanie B. Fukui
  • Aurora Neuroscience Innovation Institute, Aurora St. Luke’s Medical Center, Milwaukee, WI, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thanh Nguyen / Martin Corsten
  • Aurora Neuroscience Innovation Institute, Aurora St. Luke’s Medical Center, Milwaukee, WI, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cameron Piron / Richard Rovin
  • Aurora Neuroscience Innovation Institute, Aurora St. Luke’s Medical Center, Milwaukee, WI, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-27 | DOI: https://doi.org/10.1515/ins-2014-0011


Surgical access to subcortical lesions in the sensorimotor area can lead to a high degree of cognitive and functional morbidity through injury to white matter fiber tracts. Inherent technological challenges limit resection of lesions in the sensorimotor area. A systematic and integrated approach to address these challenges termed the six-pillar approach has been developed. While individual elements of these pillars have been reported elsewhere, the authors hypothesize that the consistent adoption of standardized imaging, navigation, access, optics and resection technologies as a system identifies and protects eloquent tissue. In addition, this approach allows for the targeted harvest of viable cells to serve as the substrate for molecular regenerative therapy. An illustrative case with resection of a low-grade glioma in the sensorimotor region using the six-pillar approach is included to highlight the strengths of this approach.

This article offers supplementary material which is provided at the end of the article.

Keywords: Automated non-thermal resection; high definition exoscope; sensorimotor; six-pillar approach; tissue preservation; transulcal radial access


  • [1]

    Abdullah KG, Lubelski D, Nucifora PG, Brem S. Use of diffusion tensor imaging in glioma resection. Neurosurg Focus. 2013;34:E1.CrossrefGoogle Scholar

  • [2]

    Acerbi F, Broggi M, Eoli M, Anghileri E, Cuppini L, Pollo B, et al. Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: preliminary results in 12 cases. Acta Neurochir (Wien). 2013;155:1277–86.Google Scholar

  • [3]

    Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316–29.PubMedCrossrefGoogle Scholar

  • [4]

    Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:1455–60.PubMedGoogle Scholar

  • [5]

    Bai X, Zhang Y, Liu Y, Han T, Liu L. Grading of supratentorial astrocytic tumors by using the difference of ADC value. Neuroradiology. 2011;53:533–9.CrossrefPubMedGoogle Scholar

  • [6]

    Bertholdo D, Watcharakorn A, Castillo M. Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am. 2013;23:359–80.PubMedCrossrefGoogle Scholar

  • [7]

    Bethune AJ, Houlden DA, Smith TS, Yee AJ, Midha R, Singrakhia M. Generalized peripheral nerve failure during thoracic spine surgery: a case report. J Clin Monit Comput. 2007;21:41–7.PubMedCrossrefGoogle Scholar

  • [8]

    Blasel S, Jurcoane A, Bahr O, Weise L, Harter PN, Hattingen E. MR perfusion in and around the contrast-enhancement of primary CNS lymphomas. J Neurooncol. 2013;114:127–34.CrossrefPubMedGoogle Scholar

  • [9]

    Das S, Marsden PA. Angiogenesis in glioblastoma. New Engl J Med. 2013;369:1561–3.Google Scholar

  • [10]

    Delano-Wood L, Stricker NH, Sorg SF, Nation DA, Jak AJ, Woods SP, et al. Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment. J Alzheimers Dis. 2012;29: 589–603.Google Scholar

  • [11]

    Dlouhy BJ, Dahdaleh NS, Greenlee JD. Emerging technology in intracranial neuroendoscopy: application of the NICO Myriad. Neurosurg Focus. 2011;30:E6.CrossrefPubMedGoogle Scholar

  • [12]

    Ebner FH, Marquardt JS, Hirt B, Tatagiba M, Duffner F. Optical requirements on magnification systems for intracranial video microsurgery. Microsurgery. 2011;31:559–63.PubMedCrossrefGoogle Scholar

  • [13]

    Endoscopy-America KS. Advanced neurosurgical techniques-the 6 Pillar approach to parafascicular surgery. http://www.karlstorz.com.

  • [14]

    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.CrossrefPubMedGoogle Scholar

  • [15]

    Feigl GC, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A, et al. Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg. 2010;113: 352–7.Google Scholar

  • [16]

    Field AS, Alexander AL. Diffusion tensor imaging in cerebral tumor diagnosis and therapy. Top Magn Reson Imaging. 2004;15:315–24.PubMedCrossrefGoogle Scholar

  • [17]

    Germano IM. Transsulcal approach to mesiotemporal lesions. Anatomy, technique, and report of three cases. Neurosurg Focus. 1996;1:E4.PubMedCrossrefGoogle Scholar

  • [18]

    Gerstner ER, Sorensen AG. Diffusion and diffusion tensor imaging in brain cancer. Semin Radiat Oncol. 2011;21:141–6.CrossrefPubMedGoogle Scholar

  • [19]

    Ginsberg LE, Fuller GN, Hashmi M, Leeds NE, Schomer DF. The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. Surg Neurol. 1998;49:436–40.PubMedCrossrefGoogle Scholar

  • [20]

    Goldman M, Boxerman JL, Rogg JM, Noren G. Utility of apparent diffusion coefficient in predicting the outcome of Gamma Knife-treated brain metastases prior to changes in tumor volume: a preliminary study. J Neurosurg. 2006;105(Suppl):175–82.PubMedGoogle Scholar

  • [21]

    Gont A, Hanson JE, Lavictoire SJ, Parolin DA, Daneshmand M, Restall IJ, et al. PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1. Oncotarget. 2013;4:1266–79.PubMedGoogle Scholar

  • [22]

    Gonzalez-Darder JM, Gonzalez-Lopez P, Talamantes F, Quilis V, Cortes V, Garcia-March G, et al. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus. 2010;28:E5.CrossrefGoogle Scholar

  • [23]

    Gonzalez-Darder JM, Gonzalez-Lopez P, Talamantes-Escriba F, Garcia-March G, Roldan-Badia P, Quilis-Quesada V, et al. [Treatment of intrinsic brain tumors located in motor eloquent areas. Results of a protocol based in navigation, tractography and neurophysiological monitoring of cortical and subcortical structures]. Neurocirugia (Astur). 2011;22:23–35. [In Spanish].Google Scholar

  • [24]

    Greenfield JP, Cobb WS, Tsouris AJ, Schwartz TH. Stereotactic minimally invasive tubular retractor system for deep brain lesions. Neurosurgery. 2008;63(Suppl 2):334–9; discussion 339–40.CrossrefGoogle Scholar

  • [25]

    Heywood RM, Marcus HJ, Ryan DJ, Piccirillo SG, Al-Mayhani TM, Watts C. A review of the role of stem cells in the development and treatment of glioma. Acta Neurochir (Wien). 2012;154:951–69; discussion 69.CrossrefGoogle Scholar

  • [26]

    Higano S, Yun X, Kumabe T, Watanabe M, Mugikura S, Umetsu A, et al. Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology. 2006;241:839–46.PubMedCrossrefGoogle Scholar

  • [27]

    Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005;107:174–80.CrossrefPubMedGoogle Scholar

  • [28]

    Jabre A, Patel A. Transsulcal microsurgical approach for subcortical small brain lesions: technical note. Surg Neurol. 2006;65:312–3; discussion 313–4.CrossrefGoogle Scholar

  • [29]

    Janda P, Sroka R, Mundweil B, Betz CS, Baumgartner R, Leunig A. Comparison of thermal tissue effects induced by contact application of fiber guided laser systems. Lasers Surg Med. 2003;33:93–101.PubMedCrossrefGoogle Scholar

  • [30]

    Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25:356–69.PubMedGoogle Scholar

  • [31]

    Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23:803–20.PubMedCrossrefGoogle Scholar

  • [32]

    Kassam A, Carrau RL, Snyderman CH, Gardner P, Mintz A. Evolution of reconstructive techniques following endoscopic expanded endonasal approaches. Neurosurg Focus. 2005;19:E8.CrossrefPubMedGoogle Scholar

  • [33]

    Kassam AB, Engh JA, Mintz AH, Prevedello DM. Completely endoscopic resection of intraparenchymal brain tumors. J Neurosurg. 2009;110:116–23.CrossrefPubMedGoogle Scholar

  • [34]

    Kassam AB, Prevedello DM, Carrau RL, Snyderman CH, Thomas A, Gardner P, et al. Endoscopic endonasal skull base surgery: analysis of complications in the authors’ initial 800 patients. J Neurosurg. 2011;114:1544–68.PubMedGoogle Scholar

  • [35]

    Kassam A, Snyderman CH, Carrau RL, Gardner P, Mintz A. Endoneurosurgical hemostasis techniques: lessons learned from 400 cases. Neurosurg Focus. 2005;19:E7.PubMedCrossrefGoogle Scholar

  • [36]

    Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus. 2005;19:E4.PubMedGoogle Scholar

  • [37]

    Kassam A, Thomas AJ, Snyderman C, Carrau R, Gardner P, Mintz A, et al. Fully endoscopic expanded endonasal approach treating skull base lesions in pediatric patients. J Neurosurg. 2007;106(Suppl):75–86.PubMedGoogle Scholar

  • [38]

    Kawamata T, Iseki H, Okada Y, Hori T. Clinical application of an ultrasonically activated scalpel in neurosurgery. Neurol Res. 2001;23:64–6.CrossrefPubMedGoogle Scholar

  • [39]

    Kelly PJ, Goerss SJ, Kall BA. The stereotaxic retractor in computer-assisted stereotaxic microsurgery. Technical note. J Neurosurg. 1988;69:301–6.CrossrefPubMedGoogle Scholar

  • [40]

    Kelly PJ, Kall BA, Goerss S, Earnest F 4th. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J Neurosurg. 1986;64:427–39.CrossrefPubMedGoogle Scholar

  • [41]

    Kim BJ, Kang HG, Kim HJ, Ahn SH, Kim NY, Warach S, et al. Magnetic resonance imaging in acute ischemic stroke treatment. J Stroke. 2014;16:131–45.PubMedCrossrefGoogle Scholar

  • [42]

    Kim S, Loevner L, Quon H, Sherman E, Weinstein G, Kilger A, et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009;15:986–94.CrossrefPubMedGoogle Scholar

  • [43]

    Kriss TC, Kriss VM. History of the operating microscope: from magnifying glass to microneurosurgery. Neurosurgery. 1998;42:899–907; discussion 907–8.CrossrefGoogle Scholar

  • [44]

    Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol. 1999;156:333–44.PubMedCrossrefGoogle Scholar

  • [45]

    Le Bihan D. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology. 2013;268:318–22.Google Scholar

  • [46]

    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.CrossrefGoogle Scholar

  • [47]

    Lee EJ, Ahn KJ, Lee EK, Lee YS, Kim DB. Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clin Radiol. 2013;68:e689–97.CrossrefGoogle Scholar

  • [48]

    Lima FR, Kahn SA, Soletti RC, Biasoli D, Alves T, da Fonseca AC, et al. Glioblastoma: therapeutic challenges, what lies ahead. Biochim Biophys Acta. 2012;1826:338–49.Google Scholar

  • [49]

    Liu Y, Bai R, Sun H, Liu H, Zhao X, Li Y. Diffusion-weighted imaging in predicting and monitoring the response of uterine cervical cancer to combined chemoradiation. Clin Radiol. 2009;64:1067–74.CrossrefGoogle Scholar

  • [50]

    Liu JT, Meza D, Sanai N. Trends in fluorescence image-guided surgery for gliomas. Neurosurgery. 2014;75:61–71.CrossrefGoogle Scholar

  • [51]

    Mamelak AN, Danielpour M, Black KL, Hagike M, Berci G. A high-definition exoscope system for neurosurgery and other microsurgical disciplines: preliminary report. Surg Innov. 2008;15:38–46.CrossrefGoogle Scholar

  • [52]

    Mamelak AN, Nobuto T, Berci G. Initial clinical experience with a high-definition exoscope system for microneurosurgery. Neurosurgery. 2010;67:476–83.CrossrefGoogle Scholar

  • [53]

    McLaughlin N, Ditzel Filho LF, Prevedello DM, Kelly DF, Carrau RL, Kassam AB. Side-cutting aspiration device for endoscopic and microscopic tumor removal. J Neurol Surg B Skull Base. 2012;73:11–20.Google Scholar

  • [54]

    Morita A, Kelly PJ. Resection of intraventricular tumors via a computer-assisted volumetric stereotactic approach. Neurosurgery. 1993;32:920–6; discussion 926–7.CrossrefGoogle Scholar

  • [55]

    Moshel YA, Link MJ, Kelly PJ. Stereotactic volumetric resection of thalamic pilocytic astrocytomas. Neurosurgery. 2007;61:66–75; discussion 75.CrossrefGoogle Scholar

  • [56]

    Ogura K, Tachibana E, Aoshima C, Sumitomo M. New microsurgical technique for intraparenchymal lesions of the brain: transcylinder approach. Acta Neurochir (Wien). 2006;148: 779–85; discussion 785.CrossrefGoogle Scholar

  • [57]

    Okamoto K, Ito J, Takahashi N, Ishikawa K, Furusawa T, Tokiguchi S, et al. MRI of high-grade astrocytic tumors: early appearance and evolution. Neuroradiology. 2002;44:395–402.CrossrefGoogle Scholar

  • [58]

    Perneczky A, Fries G. Endoscope-assisted brain surgery: part 1 – evolution, basic concept, and current technique. Neurosurgery. 1998;42:219–24; discussion 224–5.Google Scholar

  • [59]

    Raza SM, Recinos PF, Avendano J, Adams H, Jallo GI, Quinones-Hinojosa A. Minimally invasive trans-portal resection of deep intracranial lesions. Minim Invasive Neurosurg. 2011;54:5–11.PubMedGoogle Scholar

  • [60]

    Recinos PF, Raza SM, Jallo GI, Recinos VR. Use of a minimally invasive tubular retraction system for deep-seated tumors in pediatric patients. J Neurosurg Pediatr. 2011;7: 516–21.CrossrefGoogle Scholar

  • [61]

    Roder C, Bender B, Ritz R, Honegger J, Feigl G, Naegele T, et al. Intraoperative visualization of residual tumor: the role of perfusion-weighted imaging in a high-field intraoperative magnetic resonance scanner. Neurosurgery. 2013;72(2 Suppl Operative):ons151–8; discussion ons8.Google Scholar

  • [62]

    Runge VM, Clanton JA, Price AC, Wehr CJ, Herzer WA, Partain CL, et al. The use of Gd DTPA as a perfusion agent and marker of blood-brain barrier disruption. Magn Reson Imaging. 1985;3:43–55.CrossrefGoogle Scholar

  • [63]

    Salas S, Brimacombe M, Schulder M. Stereotactic accuracy of a compact intraoperative MRI system. Stereotact Funct Neurosurg. 2007;85:69–74.CrossrefPubMedGoogle Scholar

  • [64]

    Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427:740–4.Google Scholar

  • [65]

    Schebesch KM, Proescholdt M, Hohne J, Hohenberger C, Hansen E, Riemenschneider MJ, et al. Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery – a feasibility study. Acta Neurochir (Wien). 2013;155:693–9.CrossrefGoogle Scholar

  • [66]

    Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H, Senner V, et al. Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol. 2004;107:272–6.CrossrefGoogle Scholar

  • [67]

    Spampinato MV, Schiarelli C, Cianfoni A, Giglio P, Welsh CT, Bisdas S, et al. Correlation between cerebral blood volume measurements by perfusion-weighted magnetic resonance imaging and 2-year progression-free survival in gliomas. Neuroradiol J. 2013;26:385–95.Google Scholar

  • [68]

    Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9:53–60.CrossrefGoogle Scholar

  • [69]

    Tovi M. MR imaging in cerebral gliomas analysis of tumour tissue components. Acta Radiol Suppl. 1993;384:1–24.Google Scholar

  • [70]

    Trinh VT, Fahim DK, Shah K, Tummala S, McCutcheon IE, Sawaya R, et al. Subcortical injury is an independent predictor of worsening neurological deficits following awake craniotomy procedures. Neurosurgery. 2013;72:160–9.CrossrefGoogle Scholar

  • [71]

    Tsougos I, Svolos P, Kousi E, Fountas K, Theodorou K, Fezoulidis I, et al. Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging. 2012;12:423–36.Google Scholar

  • [72]

    Uluc K, Kujoth GC, Baskaya MK. Operating microscopes: past, present, and future. Neurosurg Focus. 2009;27:E4.Google Scholar

  • [73]

    Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas. Br J Radiol. 2011;84:S107–11.CrossrefGoogle Scholar

  • [74]

    White ML, Zhang Y, Kirby P, Ryken TC. Can tumor contrast enhancement be used as a criterion for differentiating tumor grades of oligodendrogliomas? AJNR Am J Neuroradiol. 2005;26:784–90.Google Scholar

  • [75]

    White ML, Zhang Y, Yu F, Jaffar Kazmi SA. Diffusion tensor MR imaging of cerebral gliomas: evaluating fractional anisotropy characteristics. AJNR Am J Neuroradiol. 2011;32:374–81.CrossrefGoogle Scholar

  • [76]

    Witwer BP, Moftakhar R, Hasan KM, Deshmukh P, Haughton V, Field A, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg. 2002;97: 568–75.CrossrefGoogle Scholar

  • [77]

    Yasargil MG. Microneurosurgery. Surgical concerns. 3B. New York: Thieme; 1988. pp. 25–53.Google Scholar

  • [78]

    Yen PS, Teo BT, Chiu CH, Chen SC, Chiu TL, Su CF. White Matter tract involvement in brain tumors: a diffusion tensor imaging analysis. Surg Neurol. 2009;72:464–9; discussion 469.CrossrefGoogle Scholar

About the article

Corresponding author: Amin B. Kassam, Aurora Neuroscience Innovation Institute, Neurosurgery, Aurora St. Luke’s Medical Center, Suite 630, 2801 West Kinnickinnic River Pkwy, Milwaukee, WI 53215, USA, Tel.: +1-414-385-1814, Fax: +1-414-385-1899, E-mail:

Received: 2014-10-29

Accepted: 2015-04-20

Published Online: 2015-05-27

Published in Print: 2015-06-01

Citation Information: Innovative Neurosurgery, Volume 3, Issue 1-2, Pages 5–23, ISSN (Online) 2193-5238, ISSN (Print) 2193-522X, DOI: https://doi.org/10.1515/ins-2014-0011.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in