Jump to ContentJump to Main Navigation
Show Summary Details

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2015: 1.067
5-year IMPACT FACTOR: 1.070
Rank 36 out of 83 in category Agronomy in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.478
Source Normalized Impact per Paper (SNIP) 2015: 1.014
Impact per Publication (IPP) 2015: 1.188

Open Access
Online
ISSN
2300-8725
See all formats and pricing

Comparison of soil texture determined by two dispersion units of Mastersizer 2000

A. Sochan
  • Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
/ A. Bieganowski
  • Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
/ M. Ryżak
  • Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
/ R. Dobrowolski
  • Department of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
/ P. Bartmiński
  • Department of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
Published Online: 2012-03-20 | DOI: https://doi.org/10.2478/v10247-012-0015-9

Comparison of soil texture determined by two dispersion units of Mastersizer 2000

The comparison of particle size distributions measured by sedimentation methods and laser diffraction shows the underestimation of the fine (clay) fraction. This is attributed mainly to the shape of clay particles being different than spherical. The objective of this study was to demonstrate differences in the results of particle size distributions of soils determined with the method of laser diffraction using two different dispersion units of the Malvern Mastersizer 2000.

Keywords: particle size distributions; sedimentation; laser diffraction; Mastersizer 2000

  • Aladjadjiyan A., 2007. The use of physical methods for growing stimulation in Bulgaria. J. Cent. Eur. Agric., 8, 369-380.

  • Angadi S. V., Cutfroth H. W., McConkey B. G., and Gan Y., 2003. Yield adjustment by canola at different plant populations under semiarid prairie. Crop Sci., 43, 1358-1366. [Crossref]

  • Ashraf M., 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv., 27, 84-93. [Web of Science] [PubMed] [Crossref]

  • Ashraf M. and Mc Neilly T., 2004. Salinity tolerance in Brassica oil seeds. Crit. Rev. Plant Sci., 23(2), 157-174. [Crossref]

  • Ashraf M. and Sarvar G., 2002. Salt tolerance potential in some members of Brassicaceae physiological studies on water relations and mineral contents. In: Prospects for Saline Agriculture (Eds R. Ahmad, K. A. Malik). Kluwer Academic Press, Dordrecht, the Netherlands.

  • Carbonell M. V., Martinez E., and Amaya J. M. 2000. Stimulation of germination of rice by a static magnetic field. Electro Magnetobiol., 19 (1), 121-128.

  • Ćwintal M., Dziwulska-Hunek A., and Wilczek M., 2010. Laser stimulation effect of seeds on quality of alfalfa. Int. Agrophys., 24, 15-19.

  • Diepenbrock W., 2000. Yield analysis of winter oilseed rape (Brassica napus L.). Areview. Field Crops Res., 67, 35-49.

  • Dinoev S., 2006. Laser: a controlled assistant in agriculture. Problems Eng. Cybernetics Robotics, 56, 86-91.

  • Hernandez A. C., Carballo C. A., Artola A., and Michtchenko A., 2006. Laser irradiation effects on maize seed field performance. Seed Sci. Technol., 34, 193-197.

  • Hernandez A. C., Dominguez P. A., Cruz O. A., Ivanov R., Carballo C. A., and Zepeda B. R., 2010. Laser in agriculture. Int. Agrophys., 24, 407-422.

  • Kareem M. K. El Tobgey, Osman Y. A. H., and El Sayed A. El Sherbini, 2009. Effect of laser radiation on growth, yield and chemical constituents of anise and cumin plants. J. Appl. Sci. Res., 5(5), 522-528.

  • Lin F., Jensen C. R., and Andersen M. N., 2004. Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Res., 86, 1-13.

  • Mahmood S., Iram S., and Athar H.-U.-R., 2003. Intra-specific variability in sesame for various quantitive and qualitive attributes under differential salt regimes. J. Res. Sci., 14(2), 177-186.

  • Munns R. and Tester M., 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol., 59, 651-681. [Crossref]

  • Podleśny J., 2002. Effect of laser irradiation on the biochemical changes in seeds and the accumulation of dry matter in the faba bean. Int. Agrophysics, 16, 209-213.

  • Podleśny J. and Podleśna A., 2004. Morphological changes and yield of selected species of leguminous plants under the influence of seed treatment with laser light. Int. Agrophysics, 18, 253-260.

  • Rameeh S., Rezai A., and Saeidi G., 2004. Study of salinity tolerance in rapeseed. Soil Sci. Plant Analysis, 35, 2849-2866. [Crossref]

  • Sana M., Ali A., Malhk M. A., Saleem M. F., and Rafiq M., 2003. Comparative yield potential and oil content of different canola cultivars (Brassica napus L.). Pakistan J. Agron., 2(1), 1-7.

  • Szabolc I., 1989. Salt Affected Soils. CRC Press, Boca Raton, MI, USA.

  • Vasilevsky G., 2003. Perspectives of the application of biophysical methods on sustainable agriculture. Bulg. J. Plant Physiol, 179-186.

  • Yildirim E., Taylor A. G., and Spittler T. D., 2006. Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci. Hort., 111, 1-6. [Crossref]

  • Zadeh H. M. and Naeini M. B., 2007. Effects of salinity stress on the morphology and yield of two cultivars of canola (Brassica napus L.). J. Agron., 6, 409-414.

About the article


Published Online: 2012-03-20

Published in Print: 2012-02-01


Citation Information: International Agrophysics, ISSN (Print) 0236-8722, DOI: https://doi.org/10.2478/v10247-012-0015-9. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Wioleta Stelmach, Paweł Szarlip, Andrzej Trembaczowski, Andrzej Bieganowski, and Yakov Kuzyakov
European Journal of Soil Biology, 2016, Volume 73, Page 8
[2]
Yu-Tuan Huang, David J. Lowe, G. Jock Churchman, Louis A. Schipper, Ray Cursons, Heng Zhang, Tsan-Yao Chen, and Alan Cooper
Applied Clay Science, 2016, Volume 120, Page 40
[3]
Krzysztof Lamorski, Andrzej Bieganowski, Magdalena Ryżak, Agata Sochan, Cezary Sławiński, and Wioleta Stelmach
Journal of Plant Nutrition and Soil Science, 2014, Volume 177, Number 5, Page 803
[4]
András Makó, K. Rajkai, H. Hernádi, and G. Hauk
Agrokémia és Talajtan, 2014, Volume 63, Number 1, Page 19
[5]
Magdalena Ryżak and Andrzej Bieganowski
Sensors, 2012, Volume 12, Number 12, Page 11527
[7]
A. Nosalewicz and J. Lipiec
Plant and Soil, 2014, Volume 375, Number 1-2, Page 229
[8]
Tomasz Pastuszka, Jaromir Krzyszczak, Cezary Sławiński, and Krzysztof Lamorski
Measurement, 2014, Volume 49, Page 182
[9]
Radosław Dobrowolski, Andrzej Bieganowski, Przemysław Mroczek, and Magdalena Ryżak
Permafrost and Periglacial Processes, 2012, Volume 23, Number 4, Page 251

Comments (0)

Please log in or register to comment.
Log in