Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.967
5-year IMPACT FACTOR: 1.197

CiteScore 2016: 1.36

SCImago Journal Rank (SJR) 2016: 0.447
Source Normalized Impact per Paper (SNIP) 2016: 0.925

Open Access
Online
ISSN
2300-8725
See all formats and pricing
More options …

Effects of silicon on plant resistance to environmental stresses: review

T. Balakhnina
  • Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Borkowska
  • Corresponding author
  • Institute of Agrophysics, Polish Academ of Science, Doświadczalna 4, 20-290 Lublin 27, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-04-20 | DOI: https://doi.org/10.2478/v10247-012-0089-4

Abstract

The role of exogenous silicon in enhancing plant resistance to various abiotic stressors: salinity, drought, metal toxicities and ultraviolet radiation are presented. The data on possible involvement of silicon in reducing the reactive oxygen species generation, intensity of lipid peroxidation, and in some cases, increasing the activity of enzymes of the reactive oxygen species detoxificators: superoxide dismutase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase and catalase are analyzed.

Keywords : plant resistance; stress conditions; silicon; antioxidant enzymes

  • Agarie S., Uchida H. Agata W., Kubota F., and Kaufman P.T.,1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod. Sci., 1, 89-95.Google Scholar

  • Ahmed M., Hassen F., and Khurshid Y., 2011. Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agr. Water Manag., 98, 1808-1812.Google Scholar

  • Ali A.A. and Alqurainy F., 2006. Activities of antioxidants in plants under environmental stress. In: The Lutein-Prevention and Treatment for Diseases (Ed. N. Motohashi). Transworld Res. Network Press, India.Google Scholar

  • Al-aghabary K., Zhu Z., and Shi Q., 2004. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Physiol., 27(12), 2101-115.Google Scholar

  • Allen R.D., 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol., 107, 1049-1054.Google Scholar

  • Alsher R.G., Donahue J.L., and Cramer C.L., 1997. Reactive oxygen species and antioxidants: Relationship in green cells. Physiol Plant, 100, 224-233.Google Scholar

  • Asada K., 1992. Ascorbate peroxidase - hydrogen peroxidescavenging enzyme in plants. Physiol. Plant., 85, 235-24.Google Scholar

  • Asada K., 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol., 141, 391-396.Google Scholar

  • Bafana A., Dutt S., Kumar A., Kumar S., and Ahuja P.S., 2011. The basic and applied aspects of superoxide dismutase. J. Mol. Catal. B: Enzym., 68, 129-138.Google Scholar

  • Balakhnina T.I.,Bennicelli R.P., StêpniewskaZ., and StêpniewskiW., 2004. Oxygen stress In the Root zone and plant response (some examples). In: Physics, Chemistry and Biogeochemistry in Soil and Plant Studies (Ed. G. Józefaciuk), Institute of Agrophysics PAS Press, Lublin, Poland.Google Scholar

  • Balakhnina T.I., Bennicelli R.P., Stêpniewska Z., StêpniewskiW.,and Fomina I.R., 2010a. Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil, 327, 293-301.Google Scholar

  • Balakhnina T., W³odarczyk T., Borkowska A., Nosalewicz M.,Serdyuk O., Smo³ygina L., Ivanova E., and Fomina I.,2010b. Effect of 4-hydroxyphenethyl alkohol on growth and adaptive potential of barley plants under optimal and soil flooding conditions. Pol. J. Environ. Stud., 19(3), 565-572.Google Scholar

  • Balakhnina T.I., Gavrilov A.B., W³odarczyk T.M., BorkowskaA., Nosalewicz M., and Fomina I.R., 2009. Dihydroquercetin protects barley seeds against mould and increases seedling adaptive potential under soil flooding. Plant Growth Reg., 57, 127-135.Google Scholar

  • Balakhnina T.I., Kosobryukhov A.A., Ivanov A.A., andKreslavskii V.D., 2005. The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll, and the level of antioxidant enzymes in pea leaves. Russ. J. Plant Physiol., 52(1), 15-20.Google Scholar

  • Balakhnina T.I.,MatichenkovV.V.,W³odarczykT.,BorkowskaA.,Nosalewicz M., and Fomina I.R., 2012. Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth. Reg., DOI 10.1007/s10725-012-9658-6.CrossrefGoogle Scholar

  • Barber D.A. and Shone M.G.T., 1966. The absorption of silica from aqueous solutions by plants. J. Exp. Bot., 17, 569-578.Google Scholar

  • Beckmann M., Hock M., Bruelheide H., and Erfmeier A., 2012. The role of UV-B radiation in the invasion of Hieraciumpilosella - A comparison of German and New Zealand plants. Environ. Exp. Bot., 75, 173-180.Google Scholar

  • Bednarek W., Tkaczyk P., and Dresler S., 2006. Heavy metals content as criterion for assessment of carrot root (in Polish). Acta Agrophysica, 142, 779-790.Google Scholar

  • Bennicelli R.P., Balakhnina T.I., Szajnocha K., and Banach A.,2005. Aerobic conditions and antioxidative system of Azollacaroliniana Willd. in the presence of Hg in water solution. Int. Agrophysics, 19, 27-30.Google Scholar

  • Beyer W., Imlay J., and Fridovich I., 1991. Superoxide dismutase. Prog. Nucl. Asid Res., 40, 221-253.Google Scholar

  • Biel K.Y., Matichenkov V.V., and Fomina I.R., 2008. Protective role of silicon in living systems. In: Functional Foods for Chronic Diseases (Ed. D.M. Martirosyan). D and A Inc., Richardson Press, Dallas, USA.Google Scholar

  • Bowler C., Van Montagu M., and Inze D., 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant. Mol. Biol., 43, 83-116.Google Scholar

  • Brigelius-Flohe R. and Flohe L., 2003. Is there a role of glutathione peroxidases in signaling and differentiation? Biofactors, 17, 93-102.Google Scholar

  • Chen H., Qualls R.G., and Blank R.R., 2005. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat. Bot., 82, 250-268.Google Scholar

  • Devkota A. and Jha P.K., 2011. Influence of water stress on growth and yield of Centella asiatica. Int. Agrophys., 25, 211-214.Google Scholar

  • Egneus H., Heber U., and Kirk M., 1975. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim. Biophys. Acta, 408, 252-268.Google Scholar

  • Epron D. and Dreyer E., 1993. Long-term effects of drought on photosynthesis of adult oak trees (Quercus petraea and Q.robur) in a natural stand. New Phytol., 125, 381-389.Google Scholar

  • Epstein E., 1999. Silicon - Annual Review of Plant Physiology. Plant Mol. Biol., 50, 641-664.Google Scholar

  • Fang Ch.-X., Wang Q.-S., Yu Y., Huang L.-K.,WuX.-Ch., andLin W.-X., 2011. Silicon and its uptaking gene Lsi1 in regulation of rice UV-B tolerance. Acta Agron. Sin., 37(06), 1005-1011.Google Scholar

  • Farkas I., 2011. Plant drought stress: detection by image analysis. In: Encyclopedia of Agrophysics (Eds J. Gliński, J. Horabik, J. Lipiec), Springer Press, Dordrecht-Heidelberg-London- New York.Google Scholar

  • Ghamsari L., Keyhani E., and Golkhoo S., 2007. Kinetics properties of guaiacol peroxidase activity in Crocus sativus L. Corm during rooting. Iran. Biomed. J., 1, 137-146.Google Scholar

  • Gliński J., 2011. Agrophysical objects (soils, plants, agricultural products, and food). In: Encyclopedia of Agrophysics (Eds J.Gliński, J.Horabik, J.Lipiec), Springer Press, Dordrecht- Heidelberg-London-New York.Google Scholar

  • Gliński J., Horabik J., and Lipiec J., 2011. Agrophysical properties and processes. In: Encyclopedia of Agrophysics (Eds J. Gliński, J. Horabik, J. Lipiec), Springer Press, Dordrecht- Heidelberg-London-New York.Google Scholar

  • Gliński J. and Stêpniewski W., 1985. Soil Aeration and its Role for Plants. CRC Press, Boca Raton, Florida.Google Scholar

  • Gliński J., Stêpniewski W., Ostrowski J., and Stêpniewska Z.,2004. Spatial characteristics of soil redox conditions (Ed. Albert-Ludwigs). Proc. Conf. EUROSOIL, September 4-12, Freiburg, Germany.Google Scholar

  • Gong H.J., Chen K.M., Zhao Z.G., Chen G.C., Zhou W.J., and 2008. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol. Plantarum, 52(3), 592-596.CrossrefGoogle Scholar

  • Gong H., Zhu X., Chen K., Wang S., and Zhang Ch., 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci., 169, 313-321.Google Scholar

  • Gunes A., Inal A., Bagci E.G., and Coban S., 2007a. Siliconmediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J. Plant Physiol., 164, 807-811.Google Scholar

  • Gunes A., Inal A., Bagci E.G., Coban S., and Sahin O., 2007b. Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biol. Plantarum, 51(3), 571-574.CrossrefGoogle Scholar

  • Halliwell B., 1984. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem. Phys. Lipids, 44, 327-340.Google Scholar

  • HammondK.E.,EvansD.E., andHodsonM.J., 1995. Aluminium/ silicon interactions in barley (Hordeum vulgareL.) seedlings. Plant Soil, 173, 89-95.Google Scholar

  • Hattori T., Inanaga S., Araki H., An P., Morita S., Luxov´a M.,and Lux A., 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant., 123, 459-466.Google Scholar

  • Hattori T., Sonobe K., Inanaga S., An P., Tsuji W., Araki H.,Eneji A.E., and Morita S., 2007. Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ. Exp. Bot., 60, 177-182.Google Scholar

  • Hejazi Mehrizi M., Shariatmadari H., KhoshgoftarmaneshA.H., and Zarezadeh A., 2011. Effect of salinity and zinc on physiological and nutritional responses of rosemary. Int. Agrophys., 25, 349-353.Google Scholar

  • Hossain M.T., Soga K., Wakabayashi K., Kamisaka S., Fujii S.,Yamamoto R., and Hoson T., 2007. Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves. J. Plant Phys., 164(4), 385-393.CrossrefGoogle Scholar

  • Jaleel C.A., Riadh K., Gopi R., Manivannan P., Inès J.,AI-Juburi H.J., Zhao C.X., Shao H.B., and PanneerselvamA., 2009. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant., 31, 427-436.Google Scholar

  • Jarvis S.C., 1987. The uptake and transport of silicon by perennial ryegrass and wheat. Plant Soil, 97, 429-437.Google Scholar

  • Jones L.H.P. and Handreck K.A., 1967. Silica in soils, plants and animals. Adv. Agron., 19, 107-149.Google Scholar

  • Khelifa S., M’HamdiM., RejebH., Belbahri L., and SouayehN.,2011. Relation between catalase activity, salt stress and urban environments in Citrus aurantium L. J. Hortic. Forest., 3(6), 186-189.Google Scholar

  • Kovda V.A., 1973. The bases of learning about soils. Nauka, 2(8), 377-428.Google Scholar

  • Kubioe J., 2005. The effect of exogenous spermidine on superoxide dismutase activity, H2O2 and superoxide radical level in barley leaves under water deficit conditions. Acta Physiol. Plant., 27(3A), 289-295.Google Scholar

  • Larson R.A., 1988. The antioxidants of higher plants. Phytochem., 27, 969-978.Google Scholar

  • Li B., Wei Song Ch., Li N., and Zhang J., 2007. Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotech. J., 6(2), 146-159.Google Scholar

  • Liang Y., Chen Q., Liu Q., Zhang W., and Ding R., 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of saltstressed barley (Hordeum vulgare L.). J. Plant Physiol., 160, 1157-1164.Google Scholar

  • Liang Y.C., Si J., and Römheld V., 2005. Silicon uptake and transport is an active process in Cucumis sativus L. New Phytol., 167, 797-804.Google Scholar

  • Lizana C., Hess S., and Calderini D.F., 2009. Crop phenology modifies wheat responses to increased UV-B radiation. Agr. Forest Meteorol., 149, 1964-1974.Google Scholar

  • Lux A., Luxova´ M., Abe J., Morita S., and Inanaga S., 2003. Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant Soil, 225, 85-91.Google Scholar

  • Lux A., Luxova´ M., Hattori T., Inanaga S., and Sugimoto Y.,2002. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol. Plant., 115, 87-92.Google Scholar

  • Ma C.C., Li Q.F., Gao Y.B., and Xin T.R., 2004. Effects of silicon application on drought resistance of cucumber plants. Soil Sci. Plant Nutr., 50, 623-632.Google Scholar

  • Ma J.F.,Miyake Y., and Takahashi E., 2001a. Silicons as a beneficial element for crop plants. In: Silicon in Agriculture (Eds L. Datonoff, G. Korndorfer, G. Synder). Elsevier Sci. Press, New York, USA.Google Scholar

  • Ma J.F., Ryan P.R., and Delhaize E., 2001b. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci., 6, 273-278.Google Scholar

  • MaJ.F. and Yamaji N., 2006. Silicon uptake and accumulation in lower plants. Trends Plant Sci., 11(8), 392-397.Google Scholar

  • Matichenkov V.V., and Ammosova J.M., 1996. Effect of amorphous silica on soil properties of a sod-podzolic soil. Eurasian Soil Sci., 28(10), 87-99.Google Scholar

  • Matichenkov V.V., Calvert D.V., and Snyder G.H., 2000. Prospective silicon fertilization for citrus in Florida. Soil Crop Sci. Proc., 59, 137-141.Google Scholar

  • Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7, 405-410.Google Scholar

  • Molassiotis A., Sotiropoulos T., Tanou G., Diamantidis G., andTherios I., 2005. Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstockEM9(Malus domestica Borkh). Environ. Exp. Bot., 56, 54-62.Google Scholar

  • Parry D.W. and Kelso M., 1975. The distribution of silicon deposits in the root Molina caerulea (L.) Moench and Sorghum bicolor (L.) Moench. Ann. Bot., 39, 995-1001.Google Scholar

  • Parvaiz A. and Satyawati S., 2008. Salt stress and phytobiochemical responses of plants - a review. Plant Soil Environ., 54(3), 89-99.Google Scholar

  • Pociecha E., Kooecielniak J., and Filek W., 2008. Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol. Plant., 30, 529-535.Google Scholar

  • Rains D.W., Epstein E., Zasoski R.J., and Aslam M., 2006. Active silicon uptake by wheat. Plant Soil, 280, 223-228.Google Scholar

  • Rana A. and Masood A., 2002. Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air, Soil Pollut., 138, 165-180.Google Scholar

  • Ranganathan S., Suvarchala V., Rajesh Y.B.R.D., Prasad M.S.,Padmakumari A.P., and Voleti S.R., 2006. Effects of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biol. Plant., 50, 713-716.Google Scholar

  • Richmond K.E. and Sussman’s M., 2003. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol., 6, 268-272.Google Scholar

  • Rosa S.B., Caverzan A., Teixeira F.K., Lazzarotto F., SilveiraJ.A.G., Ferreira-Silva S.L., Abreu-Neto J., Margis R.,and Margis-Pinheiro M., 2010. Cytosolic APx knockdown indicates an ambiguous redox responses in rice. Phytochem., 71, 548-558.Google Scholar

  • Rybus-Zaj¹c M. and Kubioe J., 2010. Effect of UV-B radiation on antioxidative enzyme activity in cucumber cotyledons. Acta Biol. Cracoviensia, Botanica, 52(2), 97-102.Google Scholar

  • Said-Al Ahl H.A.H., Omer E.A., and Naguib N.Y., 2009. Effect of water stress and nitrogen fertilizer on herb and essential oil of oregano. Int. Agrophys., 23, 269-275.Google Scholar

  • Savant N.K., Snyder G.H., and Datnoff L.E., 1997. Silicon management and sustainable rice production. Advances Agron., 58, 151-199.Google Scholar

  • Schmidt R.E., Zhang X., and Chalmers D.R., 1999. Response of photosynthesis and superoxide dismutase to silica applied to creeping bentgrass grown under two fertility levels. J. Plant Nutr., 22, 1763-1773.Google Scholar

  • Shein E.V. and Pachepsky Y.A., 1995. Influence of root density on the critical soil water potential. Plant Soil, 171(2), 351-357.Google Scholar

  • Shen X., Zhou Y., Duan L., Li Z., Eneji A.E., and Li J., 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J. Plant Physiol., 167, 1248-1252.Google Scholar

  • Shi Q.H.,BaoZ.Y.,ZhuZ.J.,HeY., QianQ.Q., andYuJ.Q., 2005. Silicon mediated alleviation of Mn toxicity in Cucumissativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochem., 66, 1551-1559.Google Scholar

  • Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T.,Yabuta Y., and Yoshimura K., 2002. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot., 35(372), 1305-1319.Google Scholar

  • Shim I-S., Momose Y., Yamamoto A., Kim D-W., and Usui K.,2003. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Reg., 39, 285-292.Google Scholar

  • Sokolova T.A., 1985. The clay minerals in the humid regions of USSR (in Russian). Nauka Press, Novosibirsk, Russia, Soylemezoglu G., Demir K., Inal A., and Gunes A., 2009. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci. Hort., 123, 240-246.Google Scholar

  • Yang X., Liang Z., Wen X., and Lu C., 2008. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol. Biol., 66, 73-86.Google Scholar

  • Yoshida S., 1975. The physiology of silicon in rice. Techn. Bull., 25, 24-27.Google Scholar

  • Wang W., Vinocur B., and Altman A., 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.Google Scholar

  • Zancan S., Suglia I., La Rocca N., and Ghisi R., 2008. Effects of UV-B radiation on antioxidant parameters of iron-deficient barley plants. Environ. Exp. Bot., 63, 71-79.Google Scholar

  • Zhu J.K., 2001. Plant salt tolerance. Trends Plant Sci., 6, 66-71.Google Scholar

  • Zhu X., Song F., and Xu H., 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza, 20, 325-332.Google Scholar

About the article

Published Online: 2013-04-20

Published in Print: 2013-03-01


Citation Information: International Agrophysics, ISSN (Print) 0236-8722, DOI: https://doi.org/10.2478/v10247-012-0089-4.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Laksmita Prima Santi, Djoko Mulyanto, and Didiek Hadjar Goenadi
Journal of Minerals and Materials Characterization and Engineering, 2017, Volume 05, Number 06, Page 362
[2]
Hua Peng, Xionghui Ji, Wei Wei, Elena Bocharnikova, and Vladimir Matichenkov
Water, Air, & Soil Pollution, 2017, Volume 228, Number 8
[3]
Jian Liu, Jiwei Zhu, Pengjun Zhang, Liwei Han, Olivia L. Reynolds, Rensen Zeng, Jinhong Wu, Yue Shao, Minsheng You, and Geoff M. Gurr
Frontiers in Plant Science, 2017, Volume 8
[4]
Xionghui Ji, Saihua Liu, Huang Juan, Elena A. Bocharnikova, and Vladimir V. Matichenkov
Environmental Science and Pollution Research, 2017, Volume 24, Number 11, Page 10740
[5]
T. I. Balakhnina and E. S. Nadezhkina
Russian Journal of Plant Physiology, 2017, Volume 64, Number 2, Page 215
[6]
Julia Cooke, Michelle R. Leishman, and Sue Hartley
Functional Ecology, 2016, Volume 30, Number 8, Page 1340
[7]
Mahbod Sahebi, Mohamed M. Hanafi, and Parisa Azizi
In Vitro Cellular & Developmental Biology - Plant, 2016, Volume 52, Number 3, Page 226
[8]
Arafat A. Abdel Latef and Lam-Son P. Tran
Frontiers in Plant Science, 2016, Volume 7
[9]
Sowbiya Muneer, Yoo Park, Abinaya Manivannan, Prabhakaran Soundararajan, and Byoung Jeong
International Journal of Molecular Sciences, 2014, Volume 15, Number 12, Page 21803
[12]
Poonam Pandey, Rajneesh Kumar Srivastava, Ritika Rajpoot, Anjana Rani, Akhilesh Kumar Pandey, and R. S. Dubey
Environmental Science and Pollution Research, 2016, Volume 23, Number 2, Page 1516
[13]
K. Ghassemi-Golezani and R. Lotfi
Russian Journal of Plant Physiology, 2015, Volume 62, Number 5, Page 611
[14]
Tamara I. Balakhnina, Piotr Bulak, Vladimir V. Matichenkov, Anatoly A. Kosobryukhov, and Teresa M. Włodarczyk
Plant Growth Regulation, 2015, Volume 75, Number 2, Page 557
[15]
Iyyakkannu Sivanesan and Se Won Park
Frontiers in Plant Science, 2014, Volume 5

Comments (0)

Please log in or register to comment.
Log in