Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.967
5-year IMPACT FACTOR: 1.197

CiteScore 2016: 1.36

SCImago Journal Rank (SJR) 2016: 0.447
Source Normalized Impact per Paper (SNIP) 2016: 0.925

Open Access
Online
ISSN
2300-8725
See all formats and pricing
More options …

Measurements of methane emission from a temperate wetland by the eddy covariance method

N. Kowalska
  • Corresponding author
  • Department of Meteorology, Poznañ University of Life Sciences, Pi¹tkowska 94, 60-649 Poznañ, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B.H. Chojnicki
  • Department of Meteorology, Poznañ University of Life Sciences, Pi¹tkowska 94, 60-649 Poznañ, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Rinne
  • Department of Physics, University of Helsinki, P.O. Box 48, Erik Palmenin aukio 1, 1D07a, FI-00014 Helsinki, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Haapanala
  • Department of Physics, University of Helsinki, P.O. Box 48, Erik Palmenin aukio 1, 1D07a, FI-00014 Helsinki, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Siedlecki
  • Department of Meteorology, Poznañ University of Life Sciences, Pi¹tkowska 94, 60-649 Poznañ, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Urbaniak
  • Department of Meteorology, Poznañ University of Life Sciences, Pi¹tkowska 94, 60-649 Poznañ, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Juszczak
  • Department of Meteorology, Poznañ University of Life Sciences, Pi¹tkowska 94, 60-649 Poznañ, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Olejnik
  • Department of Meteorology, Poznañ University of Life Sciences, Pi¹tkowska 94, 60-649 Poznañ, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-07-30 | DOI: https://doi.org/10.2478/v10247-012-0096-5

Abstract

Methane emission from a wetland was measured with the eddy covariance system. The location of the system allowed observation of methane efflux from areas that were covered by different vegetation types. The data presented in this paper were collected in the period between the13th of June and the 31st of August 2012. During the warmest months of the summer, there was no strong correlation between methane emissions and either the water table depth or peat temperature. The presence of reed and cattail contributed to a pronounced diurnal pattern of the flux and lower methane emission, while areas covered by sedges emitted higher amounts more with no clear diurnal pattern.

Keywords : eddy covariance; methane emission; wetland

  • Armostrong W., Armstrong J., Beckett P.M., 1991. Convective gas-flows in wetland plant aeration. In: Plant Life Under Oxygen Deprivation (Eds M.B. Jackson, D.D. Davies, H. Lambers). SPBAcademic Press, theHague,The Netherlands.Google Scholar

  • Aurela M., Laurila T., and Tuovinen J.P., 2001. Seasonal CO2 balances of a sub-arctic mire. J. Geophys. Res., 106, 1623-1637.Google Scholar

  • Baldocchi D.D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol., 9, 479-492.CrossrefGoogle Scholar

  • Chojnicki B.H., Michalak M., Konieczna N., and Olejnik J.,2012. Sedge community (Caricetum elatea) carbon dioxide exchange seasonal parameters in a wetland. Polish J. Environ. Stud., 21(3), 579-587. Google Scholar

  • Chojnicki B.H., Urbaniak M., Józefczyk D., Augustin J., andOlejnik J., 2007. Measurement of gas and heat fluxes at Rzecin wet-land. In: Wetlands: Monitoring, Modeling and Management (Ed. T. Okruszko). Taylor Francis Group Press, London, UK.Google Scholar

  • Christiansen J.R., Korhonen J., Juszczak R., Giebels M., andPihlatie M., 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant Soil, 343, 171-185.Web of ScienceGoogle Scholar

  • Farat R., Mager P., and Pijewska I., 2004. Climate Atlas of the Wielkopolska region. Institute of Meteorology and Water Management, Poznañ Branch, Poland.Google Scholar

  • Foken T. and Wichura B., 1996. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol., 78, 83-105.Google Scholar

  • Hendriks D.M.D., Dolman A.J., and van der Molen M.K., andvan Huissteden J., 2008. A compact and stable eddy covariance set-up for methane measurements using off-axis integrated cavity output spectroscopy, Atmos. Chem. Phys., 8, 1-13.Google Scholar

  • Juszczak R., 2013. Biases in methane chamber measurements in peatlands. Int. Agrophys., 27, 159-168.Web of ScienceGoogle Scholar

  • Juszczak R., Acosta M., and Olejnik J., 2012a. Comparison of daytime and nighttime ecosystem respiration measured by the closed chamber technique on temperate mire in Poland. Polish J. Environ. Stud., 21(3), 643-658.Google Scholar

  • Juszczak R.,HumphreysE., AcostaM.,Michalak-GalczewskaM.,Kayzer D., and Olejnik J., 2012b. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant and Soil, DOI 10.1007/s11104-012-1441-y.Web of ScienceCrossrefGoogle Scholar

  • Kim J., Verma S.B., and Billesbach D.P., 1998. Seasonal variation of methane emission from a temperate Phragmites -dominated marsh: effect of growth stage and plant- mediated transport. Global Change Biol., 5, 433-440.Google Scholar

  • King J.Y., Reeburgh W.S., and Shannon K.R., 1998. Methane emission and transport by arctic sedges in Alaska: Results of a vegetation removal experiment. J. Geophys. Res., 103(D22), 29083-29092.Google Scholar

  • Kroon P.S., Hensen A., Jonker H.J.J., Ouwersloot H.G.,Vermeulen A.T., and Bosveld F.C., 2009. Uncertainties in eddy covariance flux measurements assessed from CH4 and N2O observations, Agric. Forest Meteorol., 150, 806-816.Google Scholar

  • Kroon P.S., Hensen A., Jonker H.J.J., Zahniser M.S., van’tVeen W.H., and Vermeulen A.T., 2007. Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements. Biogeosciences, 4, 715-728.Web of ScienceGoogle Scholar

  • Kutilek M., 2011. Soils and climate change. Soil Till. Res., 117, 1-7.Google Scholar

  • Launiainen S., Rinne J., Pumpanen J., Kulmala L., Kolari P.,Keronen P., Siivola E., Pohja T., Hari P., and Vesala T.,2005. Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space. Boreal Environ. Res., 10(6), 569-588.Google Scholar

  • Lee X., Massman W., and Law B.E., 2004. Handbook of micrometeorology. A Guide for Surface Flux Measurement and Analysis. Kluwer Press, Dordrecht, the Netherlands.Google Scholar

  • LundM.,LafleurP.M.,RouletN.T.,LindrothA.,ChristensenT.R.,AurelaM., ChojnickiB.H., Flanagan L.B.,Humphreys E.R.,Laurila T.,Oechel W.C., Olejnik J.,Rinne J., Schubert P.,and Nilsson M.B., 2010. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Global Change Biol., 16(9), 2436-2448.Web of ScienceGoogle Scholar

  • Parmentier F.J., 2011. Any Way the Wind Blows Dynamics of Greenhouse Gas Exchange in Northeastern Siberian Tundra. PhD. Thesis, VU University Amsterdam, The Netherland.Google Scholar

  • Rinne J., Riutta T., Pihlatie M., Aurela M., Haapanala S.,Juha-Pekka T., Eeva-Stiina T., and Vesala T., 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus, 59B, 449-457.Web of ScienceGoogle Scholar

  • Riutta T., Laine J., Aurela M., Rinne J., VesalaT., Laurila T.,Haapanala S., Pihlatie M., and Tuittila E.S., 2007. Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus, 59B, 838-852.Web of ScienceGoogle Scholar

  • Schrier-Uijl A.P., Kroon P.S., Hensen A., Leffelaar P.A.,Berendse F., and Veenendaal E.M., 2009. Comparison of chamber and eddy covariance based CO2 and CH4 emission estimates in heterogenous grass ecosystem on peat. Agric. For. Meteorol., doi:10.1016/j. agrformet. 11.007Web of ScienceCrossrefGoogle Scholar

  • Shannon R.D., White J.R., Lawson J.E., and Gilmour B.S.,1996. Methane efflux from emergent vegetation in peatlands. J. Ecol., 84, 239-246.CrossrefGoogle Scholar

  • Sorrel B.K. and Hawes I., 2010. Convective gas flow development and the maximum depths achieved by helophyte vegetation in lakes. Annals Botany, 105, 165-174.Web of ScienceGoogle Scholar

  • Thomas K.L., Benstead J., Davies K.L., and Lloyd F., 1996. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat, Soil Biol. Biochem., 28, 17-23.Google Scholar

  • WilleC.,KutzbachL.,Torsten S.,WagnerD., and Pfeiffer E.M.,2008. Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Global Change Biol., 14, 1395-1408.Web of ScienceCrossrefGoogle Scholar

  • Yavitt J.B. and Knapp A.K., 1995. Methane emission to the atmosphere through emergent cattail (Typha latifolia L.) plants. Tellus, 47B, 521-534.Google Scholar

About the article

This work was supported by COST Action ES0804, National Science Centre project No. 628/N-COST/2009/0, 2008-2013; and partly by InGOS FP7 grant agreement No. 284274) and ESF TTORCH, 2009-2013


Published Online: 2013-07-30

Published in Print: 2013-09-01


Citation Information: International Agrophysics, ISSN (Print) 0236-8722, DOI: https://doi.org/10.2478/v10247-012-0096-5.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Krystyna Milecka, Grzegorz Kowalewski, Barbara Fiałkiewicz-Kozieł, Mariusz Gałka, Mariusz Lamentowicz, Bogdan H Chojnicki, Tomasz Goslar, and Jan Barabach
The Holocene, 2017, Volume 27, Number 5, Page 651
[2]
Vítková Jitka, Dušek Jiří, Stellner Stanislav, Moulisová Lenka, and Čížková Hana
Wetlands, 2017, Volume 37, Number 4, Page 675
[3]
Xueyang Yu, Changchun Song, Li Sun, Xianwei Wang, Fuxi Shi, Qian Cui, and Wenwen Tan
Atmospheric Environment, 2017, Volume 153, Page 135
[4]
Włodzimierz Pawlak, Krzysztof Fortuniak, Mariusz Siedlecki, and Mariusz Zieliński
Atmospheric Environment, 2016, Volume 145, Page 176
[5]
Krzysztof Fortuniak, Włodzimierz Pawlak, Leszek Bednorz, Mateusz Grygoruk, Mariusz Siedlecki, and Mariusz Zieliński
Agricultural and Forest Meteorology, 2017, Volume 232, Page 306
[6]
Kevin D. Webster, Jeffrey R. White, and Lisa M. Pratt
Arctic, Antarctic, and Alpine Research, 2015, Volume 47, Number 4, Page 599
[7]
Janina Hommeltenberg, Matthias Mauder, Matthias Drösler, Katja Heidbach, Peter Werle, and Hans Peter Schmid
Agricultural and Forest Meteorology, 2014, Volume 198-199, Page 273
[8]
T.H. Morin, G. Bohrer, L. Naor-Azrieli, S. Mesi, W.T. Kenny, W.J. Mitsch, and K.V.R. Schäfer
Ecological Engineering, 2014, Volume 72, Page 74

Comments (0)

Please log in or register to comment.
Log in