Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.967
5-year IMPACT FACTOR: 1.197

CiteScore 2016: 1.36

SCImago Journal Rank (SJR) 2016: 0.447
Source Normalized Impact per Paper (SNIP) 2016: 0.925

Open Access
See all formats and pricing
More options …

Magnetic-time model at off-season germination

Tarlochan Singh Mahajan
  • Corresponding author
  • Department of Physics, General Shivdev Singh Divan Gurbachan Singh Khalsa College, Patiala 147001, Punjab, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Om Prakash Pandey
Published Online: 2014-02-13 | DOI: https://doi.org/10.2478/intag-2013-0027


Effect of static magnetic field on germination of mung beans is described. Seeds of mung beans, were exposed in batches to static magnetic fields of 87 to 226 mT intensity for 100 min. Magnetic time constant - 60.743 Th (Tesla hour) was determined experimentally. High value of magnetic time constant signifies lower effect of magnetic field on germination rate as this germination was carried out at off-season (13°C). Using decay function, germination magnetic constant was calculated. There was a linear increase in germination magnetic constant with increasing intensity of magnetic field. Calculated values of mean germination time, mean germination rate, germination rate coefficient, germination magnetic constant, transition time, water uptake, indicate that the impact of applied static magnetic field improves the germination of mung beans seeds even in off-season

Keywords: decay function; magnetic-time model; Malthus- Verhulst functions; mung beans seeds


  • Aladjadjiyan A. and Ylieva T., 2003. Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.). J. Cent. Eur. Agr., 4, 131-137.Google Scholar

  • Balouchi H.R. and Modarres-Sanavy S.A.M., 2009. Electromagnetic field impact on annual medics and dodder seed germination. Int. Agrophys., 23, 111-115.Google Scholar

  • Bradford K.J., 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci., 50, 248-260.CrossrefGoogle Scholar

  • Deliæ D., Stajkoviæ-Srbinoviæ O., Kuzmanoviæ D., Rasuliæ N., Mrviæ V., Andjeloviæ S., and Kneževiæ-Vukèeviæ J., 2011.Effect of bradyrhizobial inoculation on growth and seed yield of mungbean in Fluvisol and Humofluvisol. African J.Microbiol. Res., 5(23), 3946-3957.Google Scholar

  • Dominguez P.A., Hernandez A.C., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R., and Martínez O.E., 2010.Influences of the electromagnetic field in maize seed vigor (in Spanish). Revista Fitotecnia Mexicana, 33(2), 183-188.Google Scholar

  • Chantre G.R., Batlla D., Sabbatini M.R., and Orioli G., 2009.Germination parameterization and development of an afterripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals Bot., 103, 1291-1301.Web of ScienceGoogle Scholar

  • Hardegree S.P., 2006. Predicting germination response to temperature.I. Cardinal-temperature models and sub-population specific regression. Annals Bot., 97, 1115-1125.Google Scholar

  • Mahajan T.S. and Pandey O.P., 2011. Re-formulation of Malthus- Verhulst equation for black gram (Cicer arietinum L.) seeds pre-treated with magnetic field. Int. Agrophys., 25, 355-359.Google Scholar

  • Mahajan T.S. and Pandey O.P., 2012. Magnetic-time model for seed germination. African J. Biotechnol., 11(88), 15415-15421.Google Scholar

  • Marks N. and Szecówka P.S., 2010. Impact of variable magnetic field stimulation on growth of aboveground parts of potato plants. Int. Agrophys., 24, 165-170.Google Scholar

  • Martinez E., Carbonell M.V., Flórez M., Amaya J.M., and Maqueda R., 2009. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. Int. Agrophys., 23, 45-49.Google Scholar

  • Matthews S. and Khajeh Hosseini M., 2006. Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Sci. Technol., 34, 339-347.Google Scholar

  • Matwijczuk A., Kornarzyñski K., and Pietruszewski S., 2012.Effect of magnetic field on seed germination and seedling growth of sunflower. Int. Agrophys., 26, 271-278.Web of ScienceGoogle Scholar

  • Nizam I., 2011. Effects of salinity stress on water uptake, germination and early seedling growth of perennial ryegrass African J. Biotechnol., 10, 10418-10424.Google Scholar

  • Pietruszewski S., 2001. Modeling by logistic curve germination of wheat seeds Henika cultivar in magnetic field. Acta Agrophysica, 58, 143-151.Google Scholar

  • Pietruszewski S., 2002. Influence of magnetic and electric fields on seeds. Germination of selected cultivated plants. Acta Scientiarum Polonorum, 1(1), 75-81.Google Scholar

  • Pietruszewski S. and Kania K., 2010. Effect of magnetic field on germination and yield of wheat. Int. Agrophys., 24, 297- 302.Google Scholar

  • Ratushnyak A.A., Andreeva M.G., Morozova G.A., and Trushin M.V., 2008. Effect of extremely high frequency electromagnetic fields on microbiological community in rhizosphere of plants. Int. Agrophysics, 22, 71-74.Google Scholar

  • Rochalska M. and Grabowska K., 2007. Influence of magnetic fields on activity of enzyme: a- and b-amylase and glutathione S-transferase (GST) in wheat plants. Int. Agrophysics, 21, 185-188.Google Scholar

  • Salehzade H., Shishvan M.I., Ghiyasi M., Forouzi F. and Siyahjani A.A., 2009. Effect of seed priming on germination and seedling growth of wheat (Triticum aestivum L.).Res. J. Biol. Sci., 4(5), 629-631.Google Scholar

  • Sikder S., Hasan M.A., and Hossain M.S., 2009. Germination characteristics and mobilization of seed reserves in maize varieties and influenced by temperature regimes. J. Agric.Rural Develop., 7(1,2), 51-56.Google Scholar

  • Zepeda-Bautista R., Hernandez-Aguilar C., Dominguez-Pacheco A., Cruz-Orea A., Godina-Nava J.J., and Martinez-Ortíz E., 2010. Electromagnetic field and seed vigour of corn hybrids.Int. Agrophys., 24, 329-332.Google Scholar

  • Wei Y., Bai Y., and Henderson D.C., 2009. Critical conditions for successful regeneration of an endangered annual plant Cryptantha minima: A modeling approach. J. Arid. Environ., 73, 872-875.CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2014-02-13

Published in Print: 2014-03-01

Citation Information: International Agrophysics, Volume 28, Issue 1, Pages 57–62, ISSN (Print) 0236-8722, DOI: https://doi.org/10.2478/intag-2013-0027.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Omvati Verma, Neha Joshi, Sunita T. Pandey, R. C. Srivastava, and S. K. Guru
Agricultural Research, 2017, Volume 6, Number 3, Page 235
Massimo E. Maffei
Frontiers in Plant Science, 2014, Volume 5

Comments (0)

Please log in or register to comment.
Log in