Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.967
5-year IMPACT FACTOR: 1.197

CiteScore 2016: 1.36

SCImago Journal Rank (SJR) 2016: 0.447
Source Normalized Impact per Paper (SNIP) 2016: 0.925

Open Access
See all formats and pricing
More options …

Effect of Long Storage and Soil Type on the Actual Denitrification and Denitrification Capacity to N2O Formation

Teresa Włodarczyk
  • Corresponding author
  • Institute of Agrophysics, Polish Academy of Sciences, Do świadczalna 4, 20-290 Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Szarlip
  • Institute of Agrophysics, Polish Academy of Sciences, Do świadczalna 4, 20-290 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wojciech Kozieł
  • Institute of Agrophysics, Polish Academy of Sciences, Do świadczalna 4, 20-290 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Nosalewicz
  • Institute of Agrophysics, Polish Academy of Sciences, Do świadczalna 4, 20-290 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Brzezińska
  • Institute of Agrophysics, Polish Academy of Sciences, Do świadczalna 4, 20-290 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marek Pazur
  • Institute of Agrophysics, Polish Academy of Sciences, Do świadczalna 4, 20-290 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emilia Urbanek
Published Online: 2014-07-29 | DOI: https://doi.org/10.2478/intag-2014-0027


The actual denitrification to N2O and denitri-fication capacity to N2O after flooding of different soil samples stored for over 25 years in air-dry conditions and fresh, air dried samples were compared in our study. Zero N2O release was observed from the stored soils but the fresh soil samples had very low actual denitrification to N2O. NO3- addition significantly increased the amount of N2O (denitrification capacity to N2O) released after flooding, which depended on the length of storage and type of soils and was much higher in stored soils. Prolonged exposure of the soils to drought conditions caused a greater decrease in the Eh value compared with the fresh soil. The total cumulative release of N2O from the stored and fresh soils was correlated with the reduced NO3- and organic C content in soils enriched with NO3-. Some soils showed the capability of N2O consumption. CO2 release depended on the length of storage and type of soils under flooding after pro-longed drought. On average, CO2 release was higher from the stored rather than fresh soils. The organic C content in the stored soils was generally lower than in the fresh soils, probably due to the storage effect. The cumulative CO2 release from the stored soils was well correlated with the organic C while no correlation was observed for the fresh soil samples.

Keywords: actual denitrification to N2O; denitrification capacity to N2O; long-and very short-storage time; soil respiration; archived soil


  • Almasri M.N. and Kaluarachchi J.J., 2004. Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J. Hydrol., 295, 225-245.Google Scholar

  • Beare M.H., Gregorich E.G., and St-Georges P., 2009. Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biol. Biochem., 41, 611-621.Web of ScienceCrossrefGoogle Scholar

  • Bieganowski A., Ryzak M., and Witkowska-Walczak B., 2010. Determination of soil aggregate disintegration dynamic Rusing laser diffraction. Clay Minerals, 45, 23-34.Web of ScienceCrossrefGoogle Scholar

  • Bieganowski A., Witkowska-Walczak B., Gliński J., Sokolowska Z., Slawiński C., Brzezińska M., and Wlodarczyk T., 2013. Database of Polish arable mineral soils: a review. Int. Agrophys., 27, 335-350.Web of ScienceGoogle Scholar

  • Birch H.F., 1958. The effect of soil drying on humus decomposition and nitrogen. Plant Soil, 10, 9-31.CrossrefGoogle Scholar

  • Brzezińska M., Urbanek E., Szarlip P., Włodarczyk T., Bułak P, Walkiewicz A., and Rafalski P., 2014. Methanogenic potential of archived soils. Carphatian J. Earth Environ. Sci., 9, 79-90.Google Scholar

  • Burford J.R. and Bremner J.M., 1975. Relationships between the denitrification capacities of soils and total water soluble and readily decomposable soil organic matter. Soil Biol. Biochem., 7, 389-394.CrossrefGoogle Scholar

  • DeAngelis K.M., Silver W.L., Thompson A.W., and Firestone M.K., 2010. Microbial communities acclimate to recurring changes in soil redox potential status. Environ. Microbiol., 12, 3137-3149.CrossrefPubMedGoogle Scholar

  • De Nobili M., Contin M., and Brookes P.C., 2006. Microbial biomass dynamics in recently air-dried and rewetted soils compared to others stored air-dry for up to 103 years. Soil Biol. Biochem., 38, 2871-2881.Google Scholar

  • Dodla S.K., Wang J.J., DeLaune R.D., and Cook R.L., 2008. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Science of the Total Environment, 407, 471-480.Google Scholar

  • Gliński J. and Stępniewski W., 1985. Soil Aeration and its Role for Plants. CRC Press, Boca Raton, FL, USA.Google Scholar

  • Hanke A. and Strous M., 2010. Climate, fertilization, and the nitrogen cycle. J. Cosmology, 8, 1838-1845.Google Scholar

  • Harrison-Kirk T., Beare M.H., Meenken E.D., and Condron L.M., 2013. Soil organic matter and texture affect responses to dry/wet cycles: Effects on carbon dioxide and nitrous oxide emissions. Soil Biol. Biochem., 57, 43-55.Web of ScienceCrossrefGoogle Scholar

  • Hayatsu M., Tago K., and Saito M., 2008. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. SoilScie. Plant Nutr., 54, 33-45.Web of ScienceCrossrefGoogle Scholar

  • Husson O., 2013. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil, 362, 389-417.Web of ScienceGoogle Scholar

  • IPCC, 2007. Summary for policy makers. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The physical science basis. Contribution of working group I to the 4th Assessment Rep. (AR4) of Intergovernmental panel on climate change. Cambridge University Press, UK.Google Scholar

  • Kraft B., Strous M., and Tegetmeyer H.E., 2011. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J. Biotechnol., 155, 104-117.Web of ScienceGoogle Scholar

  • Kroze C., Mossier A., and Bouwman L., 1999. Closing the global N2O budget: a retrospective analysis. Global Biogeochem. Cycle., 13, 1-8.Google Scholar

  • Oliveira T.S., Costa L.M., and Schaefer C.E., 2005. Water-dispersible clay after wetting and drying cycles in four Brazilian oxisols. Soil Till. Res., 83, 260-269.Google Scholar

  • Pastorelli R., Landi S., Trabelsi D., Piccolo R., Mengoni A., Bazzicalupo M., and Pagliai M., 2011. Effects of soil management on structure and activity of denitrifying bacterial communities. Applied Soil Ecol., 49, 46-58.Google Scholar

  • Peterson M.E., Curtin D., Thomas S., Clough T.J., and Meenken E.D., 2013. Denitrification in vadose zone material amended with dissolved organic matter from topsoil and subsoil. Soil Biol. Biochem., 61, 96-104.Web of ScienceGoogle Scholar

  • Ravishankara A.R., Daniel J.S., and Portmann R.W., 2009. Nitrous Oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123-125.Web of ScienceGoogle Scholar

  • Rivett M.O., Buss S.R., Morgan P., Smith J.W.N., and Bemment Ch.D., 2008. Nitrate attenuation in groundwater: A review of bio-geochemical controlling processes. Water Res., 42, 4215-4232.CrossrefWeb of ScienceGoogle Scholar

  • Ryżak M. and Bieganowski A., 2011. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. J. Plant Nutr. Soil Sci., 174, 624-633.Web of ScienceGoogle Scholar

  • Senbayram M., Chen R., Budai A., Bakken L., and Dittert K., 2012. N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems Environ., 147, 4-12.Web of ScienceGoogle Scholar

  • Sochan A., Bieganowski A., Ryżak M., Dobrowolski R., and Bartmiński P., 2012. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int. Agrophys., 26, 99-102.Web of ScienceGoogle Scholar

  • Šimek M., Elhottová D., Klimeš F., and Hopkins D.W., 2004. Emissions of N2O and CO2 denitrification measurements and soil properties in red clover and ryegrass stands. Soil Biol. Biochem., 36, 9-21.Google Scholar

  • Włodarczyk T., 2000. Some of aspects of dehydrogenase activity in soils. Int. Agrophysics, 14, 341-354.Google Scholar

  • Włodarczyk T., Stępniewski W., and Brzezińska M., 2005. Nitrous oxide production and consumption in Calcaric Regosols as related to soil redox and texture. Int. Agrophysics, 19, 263-271.Google Scholar

  • Włodarczyk T., Stępniewski W., Brzezińska M., and Majewska U., 2011. Various textured soil as nitrous oxide emitter and consumer. Int. Agrophys., 25, 287-297.Google Scholar

  • Włodarczyk T., Stçpniewski W., Brzezińska M., and Stępniewska Z., 2004. Nitrate stability in loess soils under anaerobic conditions – laboratory studies. J. Plant Nutr. Soil Sci., 167, 693-700.Google Scholar

  • Worrall F. and Burt T.P., 2008. The effect of severe drought on the dissolved organic carbon (DOC) concentration and flux from British rivers. Journal of Hydrology, 361, 262-274.Web of ScienceGoogle Scholar

  • Wu J. and Brookes P.C., 2005. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem., 37, 507-515.CrossrefGoogle Scholar

  • Xiang S.R., Doyle A., Holden P.A., and Schimel J.P., 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol. Biochem., 40, 2281-2289.Web of ScienceGoogle Scholar

  • Yu K., Faulkner S.P., and Patrick Jr.W.H., 2006. Redox potential characterization and soil greenhouse gas concentration across a hydrological gradient in a Gulf coast forest. Chemosphere, 62, 905-914.CrossrefGoogle Scholar

  • Yu K.W., Wang Z.P., Vermoesen A., Patrick Jr W.H., and Van Cleemput O., 2001. Nitrous oxide and methane emissions from different soil suspensions: effect of soil redox status. Biol. Fertility Soils, 34, 25-30.Google Scholar

  • Zhang J., Cai Z., and Zhu T., 2011. N2O production pathways in the subtropical acid forest soils in China. Environ. Res., 111, 643-649.Web of ScienceGoogle Scholar

About the article

Received: 2013-02-18

Accepted: 2014-01-23

Published Online: 2014-07-29

Citation Information: International Agrophysics, Volume 28, Issue 3, Pages 371–381, ISSN (Online) 2300-8725, DOI: https://doi.org/10.2478/intag-2014-0027.

Export Citation

© 2014 Teresa Włodarczyk et. al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Bing Han, Xuhong Ye, Wen Li, Xichao Zhang, Yulong Zhang, Xiangui Lin, and Hongtao Zou
Journal of Soils and Sediments, 2017
Alicja Księżopolska, Teresa Włodarczyk, Małgorzata Brzezińska, Paweł Szarlip, and Marek Pazur
Scientia Agricola, 2017, Volume 74, Number 4, Page 334
Andrzej Bieganowski, Katarzyna Jaromin-Glen, Łukasz Guz, Grzegorz Łagód, Grzegorz Jozefaciuk, Wojciech Franus, Zbigniew Suchorab, and Henryk Sobczuk
Sensors, 2016, Volume 16, Number 6, Page 886

Comments (0)

Please log in or register to comment.
Log in