Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

4 Issues per year


IMPACT FACTOR 2016: 0.967
5-year IMPACT FACTOR: 1.197

CiteScore 2016: 1.36

SCImago Journal Rank (SJR) 2016: 0.447
Source Normalized Impact per Paper (SNIP) 2016: 0.925

Open Access
Online
ISSN
2300-8725
See all formats and pricing
More options …

Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D

Parisa Mashayekhi
  • Department of Soil Science, College of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shoja Ghorbani-Dashtaki
  • Corresponding author
  • Department of Soil Science, College of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Reza Mosaddeghi
  • Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hossein Shirani / Ali Reza Mohammadi Nodoushan
  • Department of Computer Engineering, Faculty of Engineering, Vali-e-Asr University, Rafsanjan, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-20 | DOI: https://doi.org/10.1515/intag-2015-0087

Abstract

In this study, HYDRUS-2D/3D was used to simulate ponded infiltration through double-ring infiltrometers into a hypothetical loamy soil profile. Twelve scenarios of inverse modelling (divided into three groups) were considered for estimation of Mualem-van Genuchten hydraulic parameters. In the first group, simulation was carried out solely using cumulative infiltration data. In the second group, cumulative infiltration data plus water content at h = −330 cm (field capacity) were used as inputs. In the third group, cumulative infiltration data plus water contents at h = −330 cm (field capacity) and h = −15 000 cm (permanent wilting point) were used simultaneously as predictors. The results showed that numerical inverse modelling of the double-ring infiltrometer data provided a reliable alternative method for determining soil hydraulic parameters. The results also indicated that by reducing the number of hydraulic parameters involved in the optimization process, the simulation error is reduced. The best one in infiltration simulation which parameters α, n, and Ks were optimized using the infiltration data and field capacity as inputs. Including field capacity as additional data was important for better optimization/definition of soil hydraulic functions, but using field capacity and permanent wilting point simultaneously as additional data increased the simulation error.

Keywords: double-ring infiltrometer; Mualem-van Genuchten model; HYDRUS-2D/3D; inverse modelling; statistical criteria

REFERENCES

  • Abbasi F., 2015. Advanced soil physics. Tehran University Publication, Iran.Google Scholar

  • Abbasi F., Šimůnek J., Feyen J., van Genuchten M.Th., and Shouse P.J., 2003. Simultaneous inverse estimation of soil hydraulic and solute transport parameters from transient field experiments: homogeneous soil. Trans. ASAE, 46(4), 1085-1095.Google Scholar

  • Akaike H., 1974. A new look at the statistical model identification. IEEE Trans Automat Contr., 19, 716-723.Google Scholar

  • Alletto L., Pot V., Giuliano S., Costes M., Perdrieux F., and Justes E., 2015. Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma, 243-244, 18-28.Web of ScienceGoogle Scholar

  • Asgarzadeh H., Mosaddeghi M.R., Dexter A.R., Mahboubi A.A., and Neyshabouri M.R., 2014. Determination of soil available water for plants: consistency between laboratory and field measurements. Geoderma, 226-227, 8-20.Web of ScienceGoogle Scholar

  • Bitterlich S., Durner W., Iden S.C., and Knabner P., 2004. Inverse estimation of the unsaturated soil hydraulic properties from column outflow experiments using free-form parameterizations. Vadose Zone J., 3, 971-981.Google Scholar

  • Bohne K., Roth C., Leij F.J., and van Genuchten M.Th., 1993. Rapid method for estimating the unsaturated hydraulic conductivity from infiltration measurements. Soil Sci., 55, 237-244.Google Scholar

  • Burnham K.P. and Anderson D.R., 2004. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res., 33, 261-304.Google Scholar

  • Damodhara Rao M., Raghuwanshi N.S., and Singh R., 2006. Development of a physically based 1D-infiltraton model for irrigated soils. Agric. Water Manag., 85, 165-174.Google Scholar

  • El-Nesr N.M., Alazba A.A., and Šimůnek J., 2014. HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrig. Sci., 32, 111-125.Web of ScienceGoogle Scholar

  • Hopmans J.W., Šimůnek J., and Bristow K.L., 2002. Indirect estimation of soil thermal properties and water flux from heat pulse measurements: Geometry and dispersion effects. Water Resour. Res., 38(1), 701-714.CrossrefGoogle Scholar

  • Kandelous M.M., and Šimůnek J., 2010. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agric. Water Manag., 97, 1070-1076.Google Scholar

  • Mualem Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12(3), 513-522.Web of ScienceCrossrefGoogle Scholar

  • Nakhaei M. and Šimůnek J., 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. J. Hydrol. Hydromech., 62(1), 7-15.Web of ScienceGoogle Scholar

  • Nash J.E. and Sutcliffe J.V., 1970. River flow forecasting through conceptual models. Part I: a discussion of principles. J. Hydrol., 10, 282-290.Google Scholar

  • Pollalis E.D. and Valiantzas J.D., 2015. Isolation of a 1D infiltration time interval under ring infiltrometers for determining sorptivity and saturated hydraulic conductivity: numerical, theoretical, and experimental approach. J. Irrig. Drain. Eng., 141(2), 10.1061/(ASCE)IR.1943-4774.0000796.Web of ScienceGoogle Scholar

  • Ramos T.B., Šimůnek J., Gonçalves M.C., Martins J.C., Prazeres A., and Pereira L.S., 2012. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manag., 111, 87-104.Google Scholar

  • Rashid N.S.A., Askari M., Tanaka T., Šimůnek J., and van Genuchten M.Th., 2015. Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma, 241-242, 306-312.Web of ScienceGoogle Scholar

  • Reynolds W.D., Elrick D.E., and Youngs E.G., 2002a. Ring or cylinder infiltrometers (vadose zone). In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis. Part 4. Physical Methods. SSSA No. 5, Soil Science Society of America, Inc. Madison, WI, pp. 818-820.Google Scholar

  • Reynolds W.D., Elrick D.E., and Youngs E.G., 2002b. Single-ring and double or concentric-ring infiltrometers. In: Dane, J., Topp, G.C. (Eds): Methods of Soil Analysis. Part 4 - Physical Methods. SSSA No. 5, Soil Science Society of America, Inc. Madison, WI, pp, 821-826.Google Scholar

  • Ritter A., Munõz-Carpena R., Regalado C.M., Vanclooster M., and Lambot S., 2004. Analysis of alternative measurement strategies for the inverse optimization of the hydraulic properties of a volcanic soil. J. Hydrol., 295, 124-139.Google Scholar

  • Russo D., Bresler E., Shani U., and Parker J.C., 1991. Analysis of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology. Water Resour. Res., 27, 1361-1373.Google Scholar

  • Schaap M.G., Leij F.J., and van Genuchten M.Th., 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251,163-176.Google Scholar

  • Si B.C. and Kachanoski R.G., 2000. Estimating soil hydraulic properties during constant flux infiltration: Inverse procedures. Soil Sci. Soc. Am. J., 64, 439-449.Google Scholar

  • Sillers W.S., Fredlund D.G., and Zakerzadeh N., 2001. Mathematical attributes of some soil-water characteristic curve models. Geotech. Geol. Eng., 19, 243-283.CrossrefGoogle Scholar

  • Šimůnek J. and van Genuchten M.Th., 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32(9), 2683-2696.CrossrefGoogle Scholar

  • Šimůnek J., Wendroth O., and van Genuchten M.Th., 1998. Parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Sci. Soc. Am. J., 62, 894-905.Google Scholar

  • Šimůnek J., Wendroth O., Wypler N., and van Genuchten M.Th., 2001. Non-equilibrium water flow characterized by means of upward infiltration experiments. Eur. J. Soil Sci., 52(1), 13-24.CrossrefGoogle Scholar

  • Šimůnek J., van Genuchten M.Th., and Šejna M., 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J., 7(2), 587-600.CrossrefWeb of ScienceGoogle Scholar

  • Šimůnek J., van Genuchten M. Th., and Šejna M., 2011. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic.Google Scholar

  • van Genuchten M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44(5), 892-898.CrossrefGoogle Scholar

  • Willmott C.J., 1981. On the validation of models. Physical Geography, 2, 184-194.Google Scholar

  • Wöhling T. and Vrugt J.A., 2011. Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data. Water Resour. Res., 47, W04510. doi: 10.1029/2010WR009265.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-10-25

Accepted: 2016-04-01

Published Online: 2016-05-20

Published in Print: 2016-04-01


Citation Information: International Agrophysics, ISSN (Online) 2300-8725, DOI: https://doi.org/10.1515/intag-2015-0087.

Export Citation

© 2016 Parisa Mashayekhi et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in