Jump to ContentJump to Main Navigation
Show Summary Details
More options …

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

4 Issues per year

IMPACT FACTOR 2016: 0.967
5-year IMPACT FACTOR: 1.197

CiteScore 2016: 1.36

SCImago Journal Rank (SJR) 2016: 0.447
Source Normalized Impact per Paper (SNIP) 2016: 0.925

Open Access
See all formats and pricing
More options …

Comparing the potentials of clay and biochar in improving water retention and mechanical resilience of sandy soil

Ayodele Ebenezer Ajayi
  • Corresponding author
  • Department of Agricultural and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Ondo State, NigeriaGermany
  • Institute for Plant Nutrition and Soil Science, CAU Kiel, Hermann Rodewald str. 2, 24118 Kiel,Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Horn
  • Institute for Plant Nutrition and Soil Science, CAU Kiel, Hermann Rodewald str. 2, 24118 Kiel,Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-11-08 | DOI: https://doi.org/10.1515/intag-2016-0009


Changing climate is threatening rainfall regularity particularly in the semi-arid and arid regions; therefore, strategies to conserve water within their coarse-grained soils and to improve water use efficiency of crops are critical. This study compared the effectiveness of biochar and two types of clay materials in augmenting water retention and improving mechanical resilience of fine sand. The amendment of fine sand with woodchip-biochar and kaolinite (non-swelling clay) and Na-bentonite (swelling clay) improved the water retention capacity and interparticle bonding of the substrate depending of the rate of amendment and water content of the substrates. Na-bentonite was more effective at increasing water retention capacity at more negative matric potentials. Biochar was more effective at saturation due to the increased porosity, while kaolinite responds similarly to biochar. It is, however, shown that most of the water retained by the Na-betonite may not be available to plants, particularly at high amendment rate. Furthermore, the clay and biochar materials improved particle bonding in the fine sand with the Na-bentonite being more effective than biochar and kaolinite (in that order) in strengthening interparticle bonds and improving the resilience of fine sand, if the rate of amendment is kept at ≤50 g kg-1.

Keywords: rheometry; biochar; clay minerals; water retention; interparticle strength; sandy soil


  • Abel S., Peters A., Trinks S., Schonsky H., Facklam M., and Wessolek, G., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202-203, 183-191.Web of ScienceGoogle Scholar

  • Abousnina R.M., Manalo A., Shiau J., and Lokuge W., 2015. Effects of light crude oil contamination on the physical and mechanical properties of fine sand. Soil Sediment Contam. An Int. J., 24, 833-845, doi:CrossrefGoogle Scholar

  • Ajayi A.E., Dias Jr, M.S., Curi N., and Oladipo I., 2013. Compressive response of some agricultural soils influenced by the mineralogy and moisture. Int. Agrophys., 239-246, doi:CrossrefWeb of ScienceGoogle Scholar

  • Ajayi A.E., Holthusen D., and Horn R., 2016. Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil Till. Res., 155, 166-175, doi:CrossrefGoogle Scholar

  • Arthur E., Schjønning P., Moldrup P., Razzaghi F., Tuller M., and De Jonge L.W., 2014. Soil structure and microbial activity dynamics in 20-month field-incubated organic-amended soils. Eur. J. Soil Sci. 65, 218-230, doi:CrossrefWeb of ScienceGoogle Scholar

  • Bescansa P., Imaz M.J., Virto I., Enrique A., and Hoogmoed W.B., 2006. Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Till. Res., 87(1), 19-27.CrossrefGoogle Scholar

  • Blume H.-P., Brümmer G.W., Fleige H., Horn R., Kandeler E., Kögel-Knabner I., Kretzschmar R., Stahr K., and Wilke B.-M., 2016. Soil Science Springer, Springer, Berlin, Germany.Google Scholar

  • Bruun E.W., Petersen C.T., Hansen E., Holm J.K., and Hauggaard-Nielsen H., 2014. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management, 30, 109-118, doi:CrossrefGoogle Scholar

  • Cai W., Purich A., Cowan T., van Rensch P., and Weller E., 2014. Did climate change-induced rainfall trends contribute to the Australian Millennium drought? J. Clim., 27, 3145-3168, doi:CrossrefWeb of ScienceGoogle Scholar

  • Dempster D.N., Jones D.L., and Murphy D.V., 2012. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res., 50(3), 216-221.CrossrefWeb of ScienceGoogle Scholar

  • Donn S., Wheatley R.E., McKenzie B.M., Loades K.W., and Hallett P.D., 2014. Improved soil fertility from compost amendment increases root growth and reinforcement of surface soil on slopes. Ecol. Eng., 71, 458-465, doi:CrossrefGoogle Scholar

  • Farrell C., Ang X.Q., and Rayner J.P., 2013. Water-retention additives increase plant available water in green roof substrates. Ecological Eng., 52, 112-118, http://doi.org/http://dx.doi.org/10.1016/j.ecoleng.2012.12.098CrossrefGoogle Scholar

  • Fernandez A.M. and Rivas P., 2005. Analysis and distribution of waters in the compacted FEBEX bentonite: pore water chemistry and adsorbed water properties. In: Advances in Understanding Engineered Clay Barriers (Eds E.E. Alonso, A. Ledesma), Leiden, Netherlands.Google Scholar

  • Fredlund D.G. and Rahardjo H., 1993. Soil mechanics for unsaturated soils. Wiley and Sons Inc., Stuttgart, Germany.Google Scholar

  • Ghezzehei T.A. and Or D., 2001. Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sc. Soc. America J., 65(3), 624-637.Google Scholar

  • Hartge K.H. and Horn R., 2016. Essential Soil Physics. An introduction to soil processes, functions, structure and mechanics (Eds R. Horton, R. Horn, J. Bachmann, S. Peth). Schweizerbart Sci. Press, Stuttgart, Germany.Google Scholar

  • Hartmann P., Fleige H., and Horn R., 2009. Physical properties of forest soils along a fly-ash deposition gradient in Northeast Germany. Geoderma, 150, 188-195.Web of ScienceGoogle Scholar

  • Hawkins R.K. and Egelstaff P.A., 1980. Interfacial water structure in montmorillonite from neutron diffraction experiments. Clays Clay Miner., 28(1), 19-28.Google Scholar

  • Holthusen D., Jänicke M., Peth S., and Horn R., 2012. Physical properties of a Luvisol for different longterm fertilization treatments: I. Mesoscale capacity and intensity parameters. J. Plant Nutr. Soil Sci., 175, 4-13, doi:CrossrefGoogle Scholar

  • Jacinto A.C., Villar M.V., and Ledesma A., 2012. Influence of water density on the water-retention curve of expansive clays. Géotechnique, 62, 657-667, doi:CrossrefGoogle Scholar

  • Johnson M.S., 1984. The effects of gel-forming polyacrylamides on moisture storage in sandy soils. J. Sci. Food Agric., 35, 1196-1200.Google Scholar

  • Karbout N., Moussa M., Gasmi I., and Bousnina H., 2015. Effect of clay amendment on physical and chemical characteristics of sandy soil in arid areas: the case of ground south - eastern Tunisian. Appl. Sci. Reports, 11, doi:CrossrefGoogle Scholar

  • Laird D.A., 2006. Influence of layer charge on swelling of smectites. Appl. Clay Sci., 34(1-4), 74-87.CrossrefGoogle Scholar

  • Liang C., Zhu X., Fu S., Méndez A., Gascó G., Paz-Ferreiro J., 2014. Biochar alters the resistance and resilience to drought in a tropical soil. Environ. Res. Lett. 9, 64013.Web of ScienceCrossrefGoogle Scholar

  • Liu Z., Liu F., Ma F., Wang M., Bai X., Zheng Y., Yin H., and Zhang G., 2015. Collapsibility, composition, and microstructure of a loess in China. Can. Geotech. J., doi:CrossrefGoogle Scholar

  • Markgraf W. and Horn R., 2006. Rheological-stiffness analysis of K + -treated and CaCO3 -rich soils. J. Plant Nutr. Soil Sci., 169, 411-419, doi:CrossrefGoogle Scholar

  • Markgraf W., Peth S., and Horn R., 2006. An approach to rheometry in soil mechanics: structural changes in bentonite, clayey and silty soils. Soil Till. Res., 91, 1-14.Google Scholar

  • Markgraf W., Watts C.W., Whalley W.R., Hrkac T., and Horn R., 2012. Influence of organic matter on rheological properties of soil. Applied Clay Sci., 64, 25-33.Google Scholar

  • McKissock I., Walker E.L., Gilkes R.J., and Carter D.J., 2000. The influence of clay type on reduction of water repellency by applied clays: A review of some West Australian work. J. Hydrol., 231-232, 323-332, doi:CrossrefGoogle Scholar

  • Meisl T., Dubský M., Šrámek F., and Nečas T., 2013. The effect of clay amendment on substrate properties and growth of woody plants. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 60(8), 163-170.Google Scholar

  • Miranda-Trevino J.C. and Coles C.A., 2003. Kaolinite properties, structure and influence of metal retention on pH. Appl. Clay Sci., 23, 133-139.Google Scholar

  • Mulcahy D.N., Mulcahy D.L., and Dietz D., 2013. Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J. Arid Environ., 88, 222-225.Web of ScienceGoogle Scholar

  • Obia A., Mulder J., Martinsen V., Cornelissen G., and Børresen T., 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res., 155, 35-44, doi 10.1016/j. still.2015.08.002CrossrefGoogle Scholar

  • Pai C.W., Wang M.K., King H.B., Chiu C.Y., and Hwong J.-L., 2004. Hydroxy-interlayered minerals of forest soils in A-Li Mountain, Taiwan. Geoderma, 123, 245-255.Google Scholar

  • Roper M.M., Ward P.R., Keulen A.F., and Hill J.R., 2013. Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil Till. Res., 126, 143-150.Web of ScienceGoogle Scholar

  • Sanoway Australia, 2006. SANOPLANT. Vol. 2010, Australia. Available at: http://www.sanoway.com.au/sanoplant.overview.ews (accessed 2.11.150)Google Scholar

  • Schramm G., 1994. A practical approach to rheology and rheometry. Karlsruhe: Haake, Germany.Google Scholar

  • Shahid S.A., Qidwai A.A., Anwar F., Ullah I., and Rashid U., 2012. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized Poly(acrylamide-co-acrylic Acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules, 17, 9397-9412.Web of ScienceGoogle Scholar

  • Stern R., Ben-Hur M., and Shainberg I., 1991. Clay mineralogy effect on rain infiltration, seal formation and soil losses. Soil Science, 152(6), 455-462.Google Scholar

  • Vyalov S.S., 2013. Rheological fundamentals of soil mechanics. Developments in Geotechnical Engineering 36, Elsevier, Amsterdam, Netherland.Google Scholar

  • Ward P.R. and Oades J.M., 1993. Effect of clay mineralogy and exchangeable cations on water repellency in clay-amended sandy soils. Soil Research, 31(3), 351-364.Google Scholar

  • Yoo G., Kim H., Chen J., and Kim Y., 2014. Effects of biochar addition on nitrogen leaching and soil structure following fertilizer application to rice paddy soil. Soil Sci. Soc. Am. J., 78, 852-860, doi:CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-02-15

Accepted: 2016-08-02

Published Online: 2016-11-08

Published in Print: 2016-10-01

Citation Information: International Agrophysics, Volume 30, Issue 4, Pages 391–399, ISSN (Online) 2300-8725, DOI: https://doi.org/10.1515/intag-2016-0009.

Export Citation

© by Ayodele Ebenezer Ajayi. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shafaqat Ali, Muhammad Rizwan, Muhammad Farooq Qayyum, Yong Sik Ok, Muhammad Ibrahim, Muhammad Riaz, Muhammad Saleem Arif, Farhan Hafeez, Mohammad I. Al-Wabel, and Ahmad Naeem Shahzad
Environmental Science and Pollution Research, 2017, Volume 24, Number 14, Page 12700

Comments (0)

Please log in or register to comment.
Log in