Jump to ContentJump to Main Navigation
Show Summary Details
More options …

 

Integers


Mathematical Citation Quotient (MCQ) 2016: 0.40

Online
ISSN
1867-0660
See all formats and pricing
More options …

Une forme effective d'un théorème de Bateman sur la fonction phi d'Euler

Abdallah Derbal
  • Département de Mathématiques, Ecole Normale Supérieure, Vieux Kouba – Alger – Algérie, BP. 92. E-mail:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-01-26 | DOI: https://doi.org/10.1515/INTEG.2009.060

Abstract

Let Φ(x) be the number of the integers n such that φ(n) ≤ x, where φ denotes the Euler function. In this paper we give an explicit form of Bateman's theorem for the remainder term Φ(x) – Ax where A = ζ(2)ζ(3)/ζ(6).

Keywords.: Euler function; Zeta function; prime number theorem; computer calculus

About the article

Received: 2009-04-26

Accepted: 2009-10-13

Published Online: 2010-01-26

Published in Print: 2009-12-01


Citation Information: Integers, Volume 9, Issue 6, Pages 735–744, ISSN (Print) 1867-0652, DOI: https://doi.org/10.1515/INTEG.2009.060.

Export Citation

Comments (0)

Please log in or register to comment.
Log in