Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Interdisciplinary Toxicology

The Journal of Institute of Experimental Pharmacology of Slovak Academy of Sciences

4 Issues per year


CiteScore 2016: 1.43

SCImago Journal Rank (SJR) 2016: 0.375
Source Normalized Impact per Paper (SNIP) 2016: 0.901

Open Access
Online
ISSN
1337-9569
See all formats and pricing
More options …
Volume 2, Issue 2 (Jun 2009)

Issues

Toxins produced in cyanobacterial water blooms - toxicity and risks

Luděk Bláha
  • Centre for Cyanobacteria and their Toxins, Institute of Botany, Academy of Sciences & Masaryk University, Faculty of Science, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pavel Babica
  • Centre for Cyanobacteria and their Toxins, Institute of Botany, Academy of Sciences & Masaryk University, Faculty of Science, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Blahoslav Maršálek
  • Centre for Cyanobacteria and their Toxins, Institute of Botany, Academy of Sciences & Masaryk University, Faculty of Science, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-06-19 | DOI: https://doi.org/10.2478/v10102-009-0006-2

Toxins produced in cyanobacterial water blooms - toxicity and risks

Cyanobacterial blooms in freshwaters represent a major ecological and human health problem worldwide. This paper briefly summarizes information on major cyanobacterial toxins (hepatotoxins, neurotoxins etc.) with special attention to microcystins - cyclic heptapeptides with high acute and chronic toxicities. Besides discussion of human health risks, microcystin ecotoxicology and consequent ecological risks are also highlighted. Although significant research attention has been paid to microcystins, cyanobacteria produce a wide range of currently unknown toxins, which will require research attention. Further research should also address possible additive, synergistic or antagonistic effects among different classes of cyanobacterial metabolites, as well as interactions with other toxic stressors such as metals or persistent organic pollutants.

Keywords: microcystin; tumor promotion; peptide toxins; cylindrospermopsin; ecotoxicology

  • Adamovský O, Kopp, R., Hilscherová K, Babica, P., Palíková M, Pašková V, Navrátil, S., and Bláha, L. (2007) Microcystin kinetics (bioaccumulation, elimination) and biochemical responses in common carp and silver carp exposed to toxic cyanobacterial blooms. Environ Toxicol & Chem 26: 2687-2693.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Babica P, Bláha L, and Maršálek B. (2006) Exploring the natural role of microcystins - a review of effects on photoautotrophic organisms. J Phycol 42: 9-20.CrossrefGoogle Scholar

  • Babica P, Hilscherová K, Bártová K, Bláha L, and Maršálek B. (2007) Effects of dissolved microcystins on growth of planktonic photoautotrophs. Phycologia 46: 137-142.CrossrefWeb of ScienceGoogle Scholar

  • Bartram J, Carmichael WW, Chorus I, Jones G, and Skulberg OM. (1999) Introduction. In: Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. (Chorus I and Bartram J, eds.), pp. 1-14. WHO & E&FN Spon, LondonGoogle Scholar

  • Beardall J, and Raven JA. (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43: 26-40.CrossrefGoogle Scholar

  • Bláhová L, Babica P, Adamovský O, Kohoutek J, Maršálek B, and Bláha L. (2008) Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environ Chem Lett 6: 223-227.Web of ScienceCrossrefGoogle Scholar

  • Bláhová L, Babica P, Maršálková E, Smutná M, Maršálek B, and Bláha L. (2007) Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic - results of the national monitoring program. CLEAN - Soil, Air, Water 35: 348-354.Web of ScienceGoogle Scholar

  • Bláhová L, Oravec M, Maršálek B, Šejnohová L, Šimek Z, and Bláha L. (2009) The first occurrence of the cyanobacterial alkaloid toxin cylindrospermin in the Czech Republic as determined by immunochemical and LC/MS methods. Toxicon 53: 519-524.CrossrefWeb of SciencePubMedGoogle Scholar

  • Bouaicha N, Maatouk I, Plessis MJ, and Perin F. (2005) Genotoxic potential of microcystin-LR and nodularin in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Environ Toxicol 20: 341-347CrossrefPubMedGoogle Scholar

  • Briand J-F, Jacquet S, Bernard C, and Humbert J-F. (2003) Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet Res 34: 361-377.PubMedCrossrefGoogle Scholar

  • Chorus I. (2001) Introduction: Cyanotoxins - research for environmental safety and human health. In: Cyanotoxins - Occurence, Causes, Consequences (Chorus I, ed.), pp. 1-4. Springer-Verlag, Berlin.Google Scholar

  • Chorus I. (2005) Editorial and summary. In: Current approaches to cyanotoxin risk assessment, risk management and regulations in different countries (Chorus I, ed.), pp. 1-8. Federal Environmental Agency (Umweltbundesamt), Berlin.Google Scholar

  • Chorus I, and Bartram J. eds. (1999) Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. E&FN Spon, London.Google Scholar

  • Codd GA, Lindsay J, Young FM, Morrison LF, and Metcalf JS. (2005a) Cyanobacterial Toxins. In: Harmful Cyanobacteria (Huisman J, Matthijs HCP and Visser PM, eds.), pp. 1-23. Springer-Verlag.Google Scholar

  • Codd GA, Morrison LF & Metcalf JS. (2005b) Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203: 264-272.Google Scholar

  • Dawson RM. (1998) The toxicology of microcystins. Toxicon 36: 953-962.CrossrefPubMedGoogle Scholar

  • Dietrich D, and Hoeger S. (2005) Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach? Toxicology and Applied Pharmacology 203: 273-289.Google Scholar

  • Ding W-X, and Ong CN. (2003) Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity - MiniReview. FEMS Microbiology Letters 220: 1-7.Google Scholar

  • Duy TN, Lam PKS, Shaw GR, and Connell DW. (2000) Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Rev Environ Contam Toxicol 163: 113-186.PubMedGoogle Scholar

  • Edwards C, Beattie KA, Scrimgeour CM, and Codd GA. (1992) Identification of Anatoxin-a in Benthic Cyanobacteria (Blue-Green-Algae) and in Associated Dog Poisonings at Loch Insh, Scotland. Toxicon 30: 1165-1175.PubMedCrossrefGoogle Scholar

  • Falconer I. (2006) Cyanobacterial Toxins of Drinking Water Supplies: cylindrospermopsins and microcystins. CRC Press, Boca Raton, Florida, USA.Google Scholar

  • Fawell JK, Mitchell RE, Everett DJ, and Hill RE. (1999) The toxicity of cyanobacterial toxins in the mouse: I Microcystin-LR. Human & Experimental Toxicology 18: 162-167.CrossrefGoogle Scholar

  • Fu W-Y, Chen JP, Wang X-M, and Xu LH. (2005) Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro. Toxicon 46: 171-177.CrossrefGoogle Scholar

  • Gehringer MM. (2004) Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Letters 557: 1-8.Google Scholar

  • Guzman RE, Solter PF, and Runnegar MT. (2003) Inhibition of nuclear protein phosphatase activity in mouse hepatocytes by the cyanobacterial toxin microcystin-LR. Toxicon 41: 773-781.CrossrefPubMedGoogle Scholar

  • Humpage AR, and Falconer IR. (1999) Microcystin-LR and liver tumor promotion: Effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environmental Toxicology 14: 61-75.CrossrefGoogle Scholar

  • Humpage AR, Fenech M, Thomas P, and Falconer IR. (2000) Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 472: 155-161.Google Scholar

  • Ikawa M, Sasner JJ, and Haney JF. (1997) Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia 356: 143-148.CrossrefGoogle Scholar

  • Mez K, Beattie KA, Codd GA, Hanselmann K, Hauser B, Naegeli H, and Preisig HR. (1997) Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. European Journal of Phycology 32: 111-117.CrossrefGoogle Scholar

  • Oberemm A, Heinze R, Papendorf O, and Fastner J. (2001) Significance of unidentified toxic compounds and approaches to their identification. In: Cyanotoxins - Occurence, Causes, Consequences (Chorus I, ed.), pp. 286-295. Springer-Verlag, Berlin.Google Scholar

  • Rapala J, Robertson A, Negri AP, Berg KA, Tuomi P, Lyra C, Erkomaa K, Lahti K, Hoppu K, and Lepisto L. (2005) First report of saxitoxin in Finnish lakes and possible associated effects on human health. Environmental Toxicology 20: 331-340.PubMedCrossrefGoogle Scholar

  • Reinikainen M, Meriluoto JAO, Spoof L, and Harada K. (2001) The toxicities of a polyunsaturated fatty acid and a microcystin to Daphnia magna. Environmental Toxicology 16: 444-448.CrossrefPubMedGoogle Scholar

  • Sivonen K, and Jones G. (1999) Cyanobacterial toxins. In: Toxic Cyanobacteria in Water: A Guide to Public Health Significance, Monitoring and Management (Chorus I and Bartram J, eds.), pp. 41-111. E&FN Spon, London.Google Scholar

  • Watson SB. (2003) Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42: 332-350.CrossrefGoogle Scholar

  • Welker M, and von Dohren H. (2006). Cyanobacterial peptides - Nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30: 530-563.CrossrefGoogle Scholar

  • WHO (1998a) Guidelines for drinking water quality. World Health Organisation, Geneva.Google Scholar

  • WHO (1998b) Chapter 7: Freshwater algae and cyanobacteria. In: Guidelines for Safe Recreational-water Environments, Volume 1: Coastal and Freshwaters, pp. 125-209. World Health Organization.Google Scholar

  • Wiegand C, and Pflugmacher S. (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and Applied Pharmacology 203: 201-218.CrossrefGoogle Scholar

  • Xie LQ, Xie P, Guo LG, Li L, Miyabara Y, and Park HD. (2005) Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environmental Toxicology 20: 293-300.PubMedCrossrefGoogle Scholar

  • Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, Tamura SI, and Ueno Y. (1997) Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Natural Toxins 5: 91-95.CrossrefPubMedGoogle Scholar

  • Yu SZ. (1995) Primary Prevention of Hepatocellular-Carcinoma. Journal of Gastroenterology and Hepatology 10: 674-682.CrossrefPubMedGoogle Scholar

  • Zhou L, Yu H, and Chen K. (2002) Relationship between microcystin in drinking water and colorectal cancer. Biomedical and Environmental Sciences 15: 166-171.Google Scholar

  • Zurawell RW, Chen HR, Burke JM, and Prepas EE. (2005) Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health-Part B-Critical Reviews 8: 1-37.Google Scholar

About the article


Published Online: 2009-06-19

Published in Print: 2009-06-01


Citation Information: Interdisciplinary Toxicology, ISSN (Online) 1337-9569, ISSN (Print) 1337-6853, DOI: https://doi.org/10.2478/v10102-009-0006-2.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Minglei Ren, Guiying Zhang, Zi Ye, Zhixian Qiao, Meili Xie, Yan Lin, Tao Li, and Jindong Zhao
AMB Express, 2017, Volume 7, Number 1
[2]
Jae-Hoon Huh and Ji-Whan Ahn
Environmental Engineering Research, 2017, Volume 22, Number 1, Page 1
[3]
Tengku Nadiah Yusof, Mohd Rafatullah, Rohaslinda Mohamad, Norli Ismail, Zarina Zainuddin, and Japareng Lalung
Avicenna Journal of Environmental Health Engineering, 2017, Volume In Press, Number In Press
[4]
Klara Hercog, Sara Maisanaba, Metka Filipič, Ángeles Jos, Ana M. Cameán, and Bojana Žegura
Chemosphere, 2017
[5]
Jeremy T. Walls, Kevin H. Wyatt, Jason C. Doll, Eric M. Rubenstein, and Allison R. Rober
Science of The Total Environment, 2018, Volume 610-611, Page 786
[6]
María Ángeles Lezcano, David Velázquez, Antonio Quesada, and Rehab El-Shehawy
Water Research, 2017, Volume 125, Page 52
[7]
Patrick M. Melia, Andrew B. Cundy, Saran P. Sohi, Peter S. Hooda, and Rosa Busquets
Chemosphere, 2017, Volume 186, Page 381
[8]
Kristin Zoschke, Marta Schübel, Hilmar Börnick, and Eckhard Worch
Toxicon, 2017, Volume 137, Page 95
[9]
Tyler Gorham, Yuanyuan Jia, C.K. Shum, and Jiyoung Lee
Harmful Algae, 2017, Volume 66, Page 13
[10]
Azam Omidi, Maranda Esterhuizen-Londt, and Stephan Pflugmacher
Toxin Reviews, 2017, Page 1
[11]
Seung-Hoon Kim, Ying He, Eun-Hee Lee, Jeong-Ho Kim, and Sung Min Park
IEEE Sensors Journal, 2017, Volume 17, Number 8, Page 2377
[12]
Fernando Ramos Queiroga, Luis Fernando Marques-Santos, Hélène Hégaret, Roberto Sassi, Natanael Dantas Farias, Lucas Nunes Santana, and Patricia Mirella da Silva
Aquatic Toxicology, 2017, Volume 187, Page 100
[13]
Niranjan Nitin Parulekar, Pandurang Kolekar, Andrew Jenkins, Synne Kleiven, Hans Utkilen, Anette Johansen, Sangeeta Sawant, Urmila Kulkarni-Kale, Mohan Kale, Mona Sæbø, and Todd Miller
PLOS ONE, 2017, Volume 12, Number 3, Page e0173408
[14]
Zofia E. Taranu, Irene Gregory-Eaves, Russell J. Steele, Marieke Beaulieu, and Pierre Legendre
Global Ecology and Biogeography, 2017, Volume 26, Number 6, Page 625
[15]
Stefanie N. Scholz, Maranda Esterhuizen-Londt, and Stephan Pflugmacher
Toxicological & Environmental Chemistry, 2017, Volume 99, Number 4, Page 543
[16]
Thanh-Luu Pham, Thanh-Son Dao, Ngoc-Dang Tran, Jorge Nimptsch, Claudia Wiegand, and Utsumi Motoo
Annales de Limnologie - International Journal of Limnology, 2017, Volume 53, Page 89
[17]
L.L. Ndlela, P.J. Oberholster, J.H. Van Wyk, and P.H. Cheng
Harmful Algae, 2016, Volume 60, Page 11
[18]
L. W. B. Olaniyan, N. Mkwetshana, and A. I. Okoh
SpringerPlus, 2016, Volume 5, Number 1
[19]
Monika Woźniak, Katarzyna Bradtke, Miroslaw Darecki, and Adam Krężel
Remote Sensing, 2016, Volume 8, Number 3, Page 212
[20]
Thomas Sauvage, William E. Schmidt, Shoichiro Suda, and Suzanne Fredericq
BMC Ecology, 2016, Volume 16, Number 1
[21]
Carlos Pinheiro, Joana Azevedo, Alexandre Campos, Vítor Vasconcelos, and Susana Loureiro
Ecotoxicology, 2016, Volume 25, Number 4, Page 745
[22]
Chetan Paliwal, Tonmoy Ghosh, Khushbu Bhayani, Rahulkumar Maurya, and Sandhya Mishra
Marine Drugs, 2015, Volume 13, Number 8, Page 5384
[24]
Marina Lifshits, Dimitri Kovalerchik, and Shmuel Carmeli
Phytochemistry, 2016, Volume 123, Page 69
[25]
Meili Xie, Minglei Ren, Chen Yang, Haisi Yi, Zhe Li, Tao Li, and Jindong Zhao
Frontiers in Microbiology, 2016, Volume 7
[26]
MJ Prentice, KR O’Brien, DP Hamilton, and MA Burford
Aquatic Microbial Ecology, 2015, Volume 75, Number 2, Page 139
[27]
Vitezslav Vlcek and Miroslav Pohanka
Reviews in Medical Microbiology, 2015, Volume 26, Number 2, Page 59
[28]
Justine Schmidt, Steven Wilhelm, and Gregory Boyer
Toxins, 2014, Volume 6, Number 12, Page 3354
[29]
Said M. El-Sheikh, Geshan Zhang, Hamza M. El-Hosainy, Adel A. Ismail, Kevin E. O'Shea, Polycarpos Falaras, Athanassios G. Kontos, and Dionysios D. Dionysiou
Journal of Hazardous Materials, 2014, Volume 280, Page 723
[30]
Adam Jonas, Stefan Scholz, Eva Fetter, Eliska Sychrova, Katerina Novakova, Julia Ortmann, Martin Benisek, Ondrej Adamovsky, John P. Giesy, and Klara Hilscherova
Chemosphere, 2015, Volume 120, Page 321
[31]
An Xiang, Xiaoying Lei, Fengling Ren, Liuqin Zang, Qin Wang, Ju Zhang, Zifan Lu, and Yanhai Guo
Talanta, 2014, Volume 130, Page 363
[32]
Adam Jonas, Veronika Buranova, Stefan Scholz, Eva Fetter, Katerina Novakova, Jiri Kohoutek, and Klara Hilscherova
Aquatic Toxicology, 2014, Volume 155, Page 283
[33]
Margarida Costa, João Costa-Rodrigues, Maria Helena Fernandes, Piedade Barros, Vitor Vasconcelos, and Rosário Martins
Marine Drugs, 2012, Volume 10, Number 12, Page 2181
[34]
Giliane Zanchett and Eduardo Oliveira-Filho
Toxins, 2013, Volume 5, Number 10, Page 1896
[35]
Francine Harland, Susanna Wood, Elena Moltchanova, Wendy Williamson, and Sally Gaw
Toxins, 2013, Volume 5, Number 12, Page 2504
[36]
Marcin Kozdęba, Julia Borowczyk, Eliza Zimoląg, Marcin Wasylewski, Dariusz Dziga, Zbigniew Madeja, and Justyna Drukala
Toxicon, 2014, Volume 80, Page 38
[37]
Dorota Richter
Oceanological and Hydrobiological Studies, 2013, Volume 42, Number 3
[38]
Hangjun Zhang, Chenchen Cai, Wendi Fang, Jia Wang, Yue Zhang, Jiayu Liu, and Xiuying Jia
Aquatic Toxicology, 2013, Volume 140-141, Page 11
[39]
Majida Lahrouni, Khalid Oufdou, Fatima El Khalloufi, Mohamed Baz, Alejandro Lafuente, Mohammed Dary, Eloisa Pajuelo, and Brahim Oudra
Environmental Science and Pollution Research, 2013, Volume 20, Number 8, Page 5405
[40]
Dijana Pantelić, Zorica Svirčev, Jelica Simeunović, Milka Vidović, and Ivana Trajković
Chemosphere, 2013, Volume 91, Number 4, Page 421
[41]
Lin Huang, Yilong Xi, Xiaoping Xu, and Xinli Wen
Annales de Limnologie - International Journal of Limnology, 2012, Volume 48, Number 4, Page 383
[42]
Elbert A. Mbukwa, Titus A.M. Msagati, and Bhekie B. Mamba
Physics and Chemistry of the Earth, Parts A/B/C, 2012, Volume 50-52, Page 84
[43]
Hana Paskerová, Klára Hilscherová, and Luděk Bláha
Environmental Science and Pollution Research, 2012, Volume 19, Number 6, Page 2024
[44]
Anna Sieroslawska, Anna Rymuszka, Josef Velisek, Barbara Pawlik-Skowrońska, Zdenka Svobodova, and Tadeusz Skowroński
Fish Physiology and Biochemistry, 2012, Volume 38, Number 4, Page 1159

Comments (0)

Please log in or register to comment.
Log in