Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Interdisciplinary Toxicology

The Journal of Institute of Experimental Pharmacology of Slovak Academy of Sciences

4 Issues per year


CiteScore 2016: 1.43

SCImago Journal Rank (SJR) 2016: 0.375
Source Normalized Impact per Paper (SNIP) 2016: 0.901

Open Access
Online
ISSN
1337-9569
See all formats and pricing
More options …
Volume 6, Issue 4 (Dec 2013)

Issues

Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance

Anthony Samsel
  • Independent Scientist and Consultant, Deerfield, NH 03037, USA
/ Stephanie Seneff
  • Corresponding author
  • Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
  • Email:
Published Online: 2014-03-11 | DOI: https://doi.org/10.2478/intox-2013-0026

ABSTRACT

Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup®, is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate’s strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate’s known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin’s lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent surge in kidney failure among agricultural workers in Central America. We conclude with a plea to governments to reconsider policies regarding the safety of glyphosate residues in foods

KEYWORDS: celiac disease; gluten; glyphosate; food; cytochrome P450; deficiency

References

  • Agundez JA, Garcia-Martin E, Martinez C. (2009). Genetically based impairment in CYP2C8- and CYP2C9-dependent NSAID metabolism as a risk factor for gastrointestinal bleeding: Is a combination of pharmacogenomics and metabolomics required to improve personalized medicine? Expert Opin Drug Metab Toxicol 5(6): 607-620.CrossrefGoogle Scholar

  • Ali A. and Fletcher R. A. (1977), Phytotoxic action of glyphosate and amitrole on corn seedlings. Can J Bot 56: 2196-2202.Google Scholar

  • Allen RH, Stabler SP, Savage DG, and Lindenbaum J. Metabolic abnormalities in cobalamin (vitamin B12) and folate defi ciency. (1993) FASEB J 7: 1344-1353.Google Scholar

  • Ames BN, Shigenaga MK, Hagen TM. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90: 7915-22.CrossrefGoogle Scholar

  • Baizabal-Carvallo JF, Jankovic J. (2012). Movement disorders in autoimmune diseases. Mov Disord 27(8): 935-46.CrossrefGoogle Scholar

  • Banoglu E, King RS. (2002). Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur J Drug Metab Pharmacokinet 27(2): 135-140.CrossrefPubMedGoogle Scholar

  • Barbosa ER, Leiros da Costa MD, Bacheschi LA, Scaff M, Leite CC. (2001). Parkinsonism after glycine-derivate exposure. Mov Disord 16(3): 565-8.PubMedCrossrefGoogle Scholar

  • Bash LD, Erlinger TP, Coresh J, Marsh-Manzi J, Folsom AR, Astor BC. (2009). Infl ammation, hemostasis, and the risk of kidney function decline in the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis 53: 596-605.CrossrefGoogle Scholar

  • Bellaloui N, Reddy KN, Zablotowicz RM, Abbas HK, Abel CA. (2009). Eff ects of glyphosate application on seed iron and root ferric (III) reductase in soybean cultivars. J Agric Food Chem 57(20): 9569-74.CrossrefGoogle Scholar

  • Benini F, Mora A, Turini D, Bertolazzi S, Lanzarotto F, Ricci C, Villanacci V, Barbara G, Stanghellini V, Lanzini A. (2012). Slow gallbladder emptying reverts to normal but small intestinal transit of a physiological meal remains slow in celiac patients during gluten-free diet. Neurogastroenterol Motil 24(2): 100-7, e79-80.CrossrefGoogle Scholar

  • Benitez-Leite S, Macchi ML, Acosta M (2009). Malformaciones congenitas asociadas a agrotoxicos. Archivos de Pediatria del Uruguay 80: 237-247.Google Scholar

  • Bergamaschi G, Markopoulos K, Albertini R, Di Sabatino A, Biagi F, Ciccocioppo R, Arbustini E, Corazza GR. (2008). Anemia of chronic disease and defective erythropoietin production in patients with celiac disease. Haematologica 93(12): 1785-91.PubMedCrossrefGoogle Scholar

  • Bernfi eld M, Gotte M, Park P-W, Reizes O, Fitzgerald ML, Lincecum J, Zako M. (1999). Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68: 729-777.CrossrefGoogle Scholar

  • Beswick E, Millo J. (2011). Fatal poisoning with glyphosate-surfactant herbicide. JICS 12(1): 37-39.Google Scholar

  • Beuret CJ, Zirulnik F, Gimenez MS (2005) Eff ect of the herbicide glyphosate on liver lipoperoxidation in pregnant rats and their fetuses. Reprod Toxicol 19: 501-504.CrossrefGoogle Scholar

  • Bhatia M. (2012). Role of hydrogen sulfi de in the pathology of infl ammation. 2012: Article ID 159680.Google Scholar

  • Bjornstedt M, & Aristi P. Fernandes AP. (2010). Selenium in the prevention of human cancers. EPMA Journal 1: 389-395.CrossrefGoogle Scholar

  • Blanchard C, Rothenberg ME. (2008). Basics pathogenesis of eosinophilic esophagitis. Gastrointest Endosc Clin N Am 18(1): 133-143.CrossrefGoogle Scholar

  • Bode R, Melo C, Birnbaum D. (1984). Mode of action of glyphosate in Candida maltosa. Arch Microbiol 140(1): 83-5.PubMedCrossrefGoogle Scholar

  • Boles RG, Ment LR, Meyn MS, Horwich AL, Kratz LE, Rinaldo P. (1993). Shortterm response to dietary therapy in molybdenum cofactor defi ciency. Ann Neurol 34(5): 742-4.CrossrefGoogle Scholar

  • Boss GR. (1985). Cobalamin inactivation decreases purine and methionine synthesis in cultured lymphoblasts. J Clin Invest 76: 213-218.CrossrefPubMedGoogle Scholar

  • Bostwick HE, Berezin SH, Halata MS, Jacobson R, Medow MS. (2001). Celiac disease presenting with microcephaly. J Pediatr 138(4): 589-92.CrossrefPubMedGoogle Scholar

  • Bottaro G, Cataldo F, Rotolo N, Spina M, Corazza GR. (1999). The clinical pattern of subclinical/silent celiac disease: an analysis on 1026 consecutive cases. Am J Gastroenterol 94: 691-6.PubMedGoogle Scholar

  • Brown AM, Bradshaw MJ, Richardson R, Wheeler JG, Harvey RF. (1987). Pathogenesis of the impaired gall bladder contraction of coeliac disease. Gut 28(11): 1426-1432.CrossrefPubMedGoogle Scholar

  • Cabrera-Chavez F, Islas-Rubio AR, Rouzaud-Sandez O, Sotelo-Cruz N, Calderon de la Barcaa AM. (2010). Modifi cation of gluten by methionine binding to prepare wheat bread with reduced reactivity to serum IgA of celiac disease patients. J Cereal Sci 52(2): 310-313.CrossrefGoogle Scholar

  • Cakal B, Beyazit Y, Koklu S, Akbal E, Biyikoglu I, Yilmaz G. (2010). Elevated adenosine deaminase levels in celiac disease. J Clin Lab Anal 24(5): 323-326.CrossrefPubMedGoogle Scholar

  • Cakmak I, Yazici A, Tutus Y, Ozturk L (2009). Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in nonglyphosate resistant soybean. Eur J Agron 31(3): 114-119.CrossrefGoogle Scholar

  • Canal MJ, Tames RS, Fernandez B, (1987). Glyphosate-increased levels of indole-3-acetic acid in yellow nutsedge leaves correlate with gentisic acid levels. Physiol Plantar 71(3): 384-388.CrossrefGoogle Scholar

  • Carman JA, Vlieger HR, Ver Steeg LJ, Sneller VE, Robinson GW, Clinch-Jones CA, Haynes JI, Edwards JW. (2013). A long-term toxicology study on pigs fed a combined genetically modifi ed (GM) soy and GM maize diet. J Organic Syst 8(1): 38-54.Google Scholar

  • Carrasco A. (2013). Teratogenesis by glyphosate based herbicides and other pesticides: Relationship with the retinoic acid pathway. In: Breckling B, Verhoeven R. GM-Crop Cultivation Ecological Eff ects on a Landscape Scale. Theorie in der kologie 17. Frankfurt, Peter Lang.Google Scholar

  • Cavallaro R, Iovino P, Castiglione F, Palumbo A, Marino M, Di Bella S, Sabbatini F, Labanca F, Tortora R, Mazzacca G, Ciacci C. (2004). Prevalence and clinical associations of prolonged prothrombin time in adult untreated coeliac disease. Eur J Gastroenterol Hepatol 16(2): 219-223.CrossrefPubMedGoogle Scholar

  • Cerdas M. (2005). Chronic kidney disease in Costa Rica. Kidney Int Suppl 97: 31-33.CrossrefGoogle Scholar

  • Challacombe DN, Dawkins PD, Baker P. (1977). Increased tissue concentrations of 5-hydroxy-tryptamine in the duodenal mucosa of patients with coeliac disease. Gut 18: 882-886.CrossrefGoogle Scholar

  • Chang CY, Peng YC, Hung DZ, Hu WH, Yang DY, Lin TJ. (1999). Clinical impact of upper gastrointestinal tract injuries in glyphosate-surfactant oral intoxication. Hum Exp Toxicol 18: 475-78.CrossrefPubMedGoogle Scholar

  • Chanoine JP, Neve J, Wu S, Vanderpas J, Bourdoux P. (2001). Selenium decreases thyroglobilin concentrations but does not aff ect the increased thyroxine- to-triiodothyronine ratio in chidren with congenital hypothyroidism. J Clin Endocrinol Metab 86: 1160-1163.Google Scholar

  • Chin A, Svejda B, Gustafsson BI, Granlund AB, Sandvik AK, Timberlake A, Sumpio B, Pfragner R, Modlin IM, Kidd M. (2012). The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffi n cell serotonin secretion. Am J Physiol Gastrointest Liver Physiol 302: G397-G405.Google Scholar

  • Clotman F, van Maele-Fabry G, Chu-Wu L, Picard JJ. (1998). Structural and gene expression abnormalities induced by retinoic acid in the forebrain. Reprod Toxicol 12: 169-176.CrossrefPubMedGoogle Scholar

  • Coleman NS, Foley S, Dunlop SP, Wheatcroft J, Blackshaw E, Perkins AC, Singh G, Marsden CA, Holmes GK, Spiller RC. (2006) Abnormalities of serotonin metabolism and their relation to symptoms in untreated celiac disease. Clin Gastroenterol Hepatol 4: 874-881.CrossrefPubMedGoogle Scholar

  • Collado MC, Calabuig M, Sanz Y. (2007). Diff erences between the fecal microbiota of coeliac infants and healthy controls. Curr Issues Intest Microbiol 8(1): 9-14.Google Scholar

  • Collin P, Kaukinen K, Valimaki M, Salmi J. (2002). Endocrinological disorders and celiac disease. Endocrine Rev 23(4): 464-483.CrossrefGoogle Scholar

  • Collin P, Vilska S, Heinonen PK, Hallstrom O, Pikkarainen P. (1996). Infertility and coeliac disease. Gut 39(3): 382-384.CrossrefPubMedGoogle Scholar

  • Collins D, Wilcox R, Nathan M, Zubarik R. (2012). Celiac disease and hypothyroidism. Am J Med 125(3): 278-82.PubMedCrossrefGoogle Scholar

  • Colombato LO, Parodi H, Cantor D. (1977) Biliary function studies in patients with celiac sprue. Am J Dig Dis 22(2): 96-8.PubMedCrossrefGoogle Scholar

  • Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F.. (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204(8): 1757-64.CrossrefGoogle Scholar

  • Corrao G, Corazza GR, Bagnardi V, Brusco G, Ciacci C, Cottone M, Sategna Guidetti C, Usai P, Cesari P, Pelli MA, Loperfi do S, Volta U, Calabr A, Certo M; Club del Tenue Study Group. (2001). Mortality in patients with coeliac disease and their relatives: A cohort study. Lancet 358: 356-361.CrossrefGoogle Scholar

  • Cottone M, Termini A, Oliva L, Magliocco A, Marrone C, Orlando A, Pinzone F, Di Mitri R, Rosselli M, Rizzo A, Pagliaro L. (1999). Mortality and causes of death in celiac disease in a Mediterranean area. Dig Dis Sci 44: 2538-41.CrossrefGoogle Scholar

  • Coussens LM, Werb Z. (2002). Infl ammation and cancer. Nature 420: 860-67.CrossrefGoogle Scholar

  • Culpepper, AS, York, AC, Batts, RB, Jennings KM. (2000). Weed Management in Glufosinate- and Glyphosate-Resistant Soybean (Glycine max). Weed Technology 14(1): 77-88.CrossrefGoogle Scholar

  • Cupp MJ, Tracy TS. (1998). Cytochrome P450: New nomenclature and clinical implications. Am Fam Physician 57(1): 107-16.Google Scholar

  • Cusiel AL. (2005). The Synthesis and Reactivity of Novel Co(L)(PMG).n+ Complexes. University of Canterbury, MS Thesis, April.Google Scholar

  • Dahele A, Ghosh S. (2001). Vitamin B12 defi ciency in untreated celiac disease. Am J Gastroenterol 96(3): 745-50.CrossrefGoogle Scholar

  • D’Ari L, Barker HA. (1985). p-Cresol formation by cell free extracts of Clostridium diffi cile. Arch Microbiol 143: 311-312.CrossrefGoogle Scholar

  • Darwent AL, Kirkland KJ, Townley-Smith L, Harker KN, Cessna AJ, Lukow OM, Lefkovitch LP. (1994). Eff ect of preharvest applications of glyphosate on the drying, yield and quality of wheat. Can J Plant Sci 74(2): 221-230. CrossrefGoogle Scholar

  • de Liz Oliveira Cavalli VL, Cattani D, Heinz Rieg CE, Pierozan P, Zanatta L, Benedetti Parisotto E, Wilhelm Filho D, Mena Barreto Silva FR, Pessoa-Pureur R, Zamoner A. (2013). Roundup disrupts male reproductive functions by triggering calcium-mediated cell death in rat testis and Sertoli cells. Free Radic Biol Med 29(65C): 335-346. Google Scholar

  • de Maria N, Becerril JM, Garca-Plazaola JI, Hernandez AH, de Felipe MR, Fernandez-Pascual M. (1996). New insights on glyphosate mode of action in nodular metabolism: Role of shikimate accumulation. J Agric Food Chem 54: 2621-2628.Google Scholar

  • DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, Marietta EV, Kasarda DD, Waldmann TA, Murray JA, Semrad C, Kupfer S, Belkaid Guandalini YS, Jabri1 B. (2011). Co-adjuvant eff ects of retinoic acid and IL-15 induce infl ammatory immunity to dietary antigens. Nature 471(7337): 220-224.Google Scholar

  • Deprez P, Sempoux C, Van Beers BE, Jouret A, Robert A, Rahier J, Geubel A, Pauwels S, Mainguet P. (2002). Persistent decreased plasma cholecystokinin levels in celiac patients under gluten-free diet: respective roles of histological changes and nutrient hydrolysis. Regul Pept 110(1): 55-63.PubMedCrossrefGoogle Scholar

  • De Roos AJ, Zahm SH, Cantor KP, Weisemburger DD, Holmes FF, Burmeister LF, Blair A. (2003). Integrative assessment of multiple pesticides as risk factors for non-Hodgkins lymphoma among men. Occup Environ Med 60(9): e11.CrossrefGoogle Scholar

  • Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, Gagliardi F, Laghi L, Crecchio C, Guerzoni ME, Gobbetti M, Francavilla R. (2011). Duodenal and faecal microbiota of celiac children: Molecular, phenotype and metabolome characterization. BMC Microbiol 11: 219.PubMedCrossrefGoogle Scholar

  • Dickey W, McMillan SA, Callender ME. (1997). High prevalence of celiac sprue among patients with primary biliary cirrhosis. J Clin Gastroenterol 25(1): 328-9.PubMedCrossrefGoogle Scholar

  • Dickey W, Ward M, Whittle CR, Kelly MT, Pentieva K, Horigan G, Patton S, Mc- Nulty H. (2008). Homocysteine and related B-vitamin status in coeliac disease: Eff ects of gluten exclusion and histological recovery. Scand J Gastroenterol 43: 682688.Google Scholar

  • Dickey W, Stewart F, Nelson J, McBreen G, McMillan SA, Porter KG. (1996). Screening for coeliac disease as a possible maternal risk factor for neural tube defect. Clin Genet 49(2): 107-8.PubMedGoogle Scholar

  • Dorum S, Arntzen MO, Qiao S-W, Holm A, Koehler CJ, Thiede B, Sollid LM, Fleckenstein B. (2010). The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are peptide fragments harboring celiac disease T-cell epitopes. PLoS ONE 5(11): e14056.CrossrefGoogle Scholar

  • Dou L, Bertrand E, Cerini C, Faure V, Sampol J, Vanholder R, Berland Y, Brunet P. (2004). The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int 65: 442-451.PubMedCrossrefGoogle Scholar

  • Drexler J. (1958). Eff ect of indole compounds on vitamin B12 utilization. Blood 13(3): 239-44.Google Scholar

  • Duke, S.O.; Powles, S.B. (2008). Glyphosate: A once-in-a-century herbicide. Pest Manag Sci 64: 319-325.CrossrefGoogle Scholar

  • Egan LJ, Walsh SV, Stevens FM, Connolly CE, Egan EL, McCarthy CF. (1995). Celiac associated lymphoma: A single institution experience of 30 cases in the combination chemotherapy era. J Clin Gastroenterol 21(2): 123-9.CrossrefGoogle Scholar

  • Ejderhamn J, Samuelson K, Strandvik B. (1992) Serum primary bile acids in the course of celiac disease in children. J Pediatr Gastroenterol Nutr 14(4): 443-9.CrossrefPubMedGoogle Scholar

  • Eker S, Ozturk L, Yazici A, Erenoglu B, Romheld V, Cakmak I. (2006). Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunfl ower (Helianthus annuus L.) plants. J Agric Food Chem 54(26): 10019-25.CrossrefGoogle Scholar

  • El-Shenawy N. (2009). Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ Toxicol Pharmacol 28(3): 379-385.Google Scholar

  • Ellis JK, Russell RM, Makrauer FL, Schaefer EJ. (1986). Increased risk of vitamin A toxicity in severe hypertriglyceridemia. Ann Intern Med 105: 877-9.PubMedCrossrefGoogle Scholar

  • Erspamer V. (1986). Historical introduction: The Italian contribution to the discovery of 5-hydroxytryptamine (enteramine, serotonin). J Hypertens Suppl 4(1): S3-S5.PubMedGoogle Scholar

  • Esposito C, Paparo F, Caputo I, Rossi M, Maglio M, Sblattero D, Not T, Porta R, Auricchio S, Marzari R, Troncone R. (2002). Anti-tissue transglutaminase antibodies from coeliac patients inhibit transglutaminase activity both in vitro and in situ. Gut 51(2): 177-181.PubMedCrossrefGoogle Scholar

  • Famularo G, De Simone C, Pandey V, Sahu AR, Minisola G (2005). Probiotic lactobacilli: an innovative tool to correct the malabsorption syndrome of vegetarians? Med Hypotheses 65 (6): 11325.Google Scholar

  • Farthing MJG, Edwards CRW, Rees LH, Dawson AM (1982). Male gonadal function in coeliac disease: 1. Sexual dysfunction, infertility, and semen quality. Gut 23: 608-614.CrossrefPubMedGoogle Scholar

  • Fasano A. (2011). Zonulin and its regulation of intestinal barrier function: The biological door to infl ammation, autoimmunity, and cancer. Physiol Rev 91: 151-175.CrossrefGoogle Scholar

  • Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, et al. (2003). Prevalence of celiac disease in at-risk and not-at-risk groups in the United States a large multicenter study. Arch Intern Med 163: 286-292.CrossrefPubMedGoogle Scholar

  • Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE. (2000). Zonulin, a newly discovered modulator of intestinal permeability, its expression in coeliac disease. Lancet 358: 1518-1519.Google Scholar

  • Forstermann U, Munzel T. (2006). Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 113: 1708-14.CrossrefPubMedGoogle Scholar

  • Fountoulakis S, Tsatsoulis A. (2004). On the pathogensis of autoimmune thyroid disease: A unifying hypothesis. Clin Endocrinol 60: 397-409.CrossrefGoogle Scholar

  • Franz JE, Mao MK, Sikorski JA. (1997). Glyphosate: A unique global herbicide. American Chemical Society, Publisher.Google Scholar

  • Freeman HJ. (2010). Reproductive changes associated with celiac disease. World J Gastroenterol 16(46): 5810-5814.PubMedCrossrefGoogle Scholar

  • Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, Eubanks S, Harris M, Pappas TN, Takahashi T. (2003). Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284: R1269-R1276.Google Scholar

  • Furukawa S, Usuda K, Abe M, Hayashi S, Ogawa I. (2007). Indole-3-acetic acid induces microencephaly in mouse fetuses. Exp Toxicol Pathol 59(1): 43-52.PubMedCrossrefGoogle Scholar

  • Furuta GT, Liacouras CA, Collins MH, Gupta SK, Justinich C, Putnam PE, Bonis P, Hassall E, Straumann A, Rothenberg ME; First International Gastrointestinal Eosinophil Research Symposium (FIGERS) Subcommittees. (2007). Eosinophilic esophagitis in children and adults: A systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology 133: 1342-1363.PubMedCrossrefGoogle Scholar

  • Ganson RJ, Jensen RA. (1988). The essential role of cobalt in the inhibition of the cytosolic lsozyme of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Nicotiana silvestris by glyphosate. Arch Biochem Biophys 260(1): 85-73.CrossrefGoogle Scholar

  • Gasnier C, Dumont C, Benachour N, Clair E, Chagnon M-C, Seralini G-E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262: 184-191.Google Scholar

  • Glass RL. (1984). Metal complex formation by glyphosate. Journal of Agricultural and Food Chemistry 32: 1249-1253.CrossrefGoogle Scholar

  • Gobbetti M, Giuseppe Rizzello C, Di Cagno R, De Angelis M.(2007). Sourdough lactobacilli and celiac disease. Food Microbiol 24(2): 187-96.PubMedCrossrefGoogle Scholar

  • Goldman AS, Van Fossan DD, Baird EE. (1962). Magnesium defi ciency in celiac disease. Pediatrics 29(6): 948-952.Google Scholar

  • Gopee E, van den Oever EL, Cameron F, Thomas MC. (2013). Coeliac disease, gluten-free diet and the development and progression of albuminuria in children with type 1 diabetes. Pediatr Diabetes 14(6): 455-8.CrossrefGoogle Scholar

  • Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F. (2007). Sulfi de, the fi rst inorganic substrate for human cells. FASEB J 21(8): 1699-1706.CrossrefGoogle Scholar

  • Green PHR, Cellier C. (2007). Celiac Disease. N Engl J Med 357: 1731-1743.PubMedCrossrefGoogle Scholar

  • Green PH, Fleischauer AT, Bhagat G, Goyal R, Jabri B, Neugut AI. (2003). Risk of malignancy in patients with celiac disease. Am J Med 115(3): 191-5.CrossrefPubMedGoogle Scholar

  • Grider JR, Piland BE. (2007). The peristaltic refl ex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. Am J Physiol Gastrointest Liver Physiol 292: G429-G437.Google Scholar

  • Grigg AP. (1999). Deep venous thrombosis as the presenting feature in a patient with coeliac disease and homocysteinaemia. Aust N Z J Med 29: 566-567.Google Scholar

  • Gross S, van Wanrooij RL, Nijeboer P, Gelderman KA, Cillessen SAGM, Meijer GA, Mulder CJJ, Bouma G, von Blomberg BME, Bontkes HJ. (2013). Diff erential IL-13 production by small intestinal leukocytes in active coeliac disease versus refractory coeliac disease. Mediators of Infl ammation 2013: Article ID 939047.Google Scholar

  • Grube A, Donaldson D, Kiely T, Wu L. (2011). Pesticide industry sales and usage: 2006 and 2007 market estimates. U.S. Environmental Protection Agency: Washington, DC, USA.Google Scholar

  • Haderlie LC, Widholm JM, Slife FW. (1977). Eff ect of glyphosate on carrot and tobacco cells. Plant Physiol 60: 40-43. Hadithi M, Mulder CJJ, Stam F, Azizi J, Crusius JBA, Pena AS, Stehouwer CDA, Smulders YM. (2009). Eff ect of B vitamin supplementation on plasma homocysteine levels in celiac disease. World J Gastroenterol 15(8): 955-960.Google Scholar

  • Halfdanarson TR, Kumar N, Hogan WJ, Murray JA. (2009). Copper defi ciency in celiac disease. J Clin Gastroenterol 43(2): 162-4.CrossrefGoogle Scholar

  • Halfdanarson TR, Litzow MR, Murray JA. (2007). Hematologic manifestations of celiac disease. Blood 109: 412-21.CrossrefPubMedGoogle Scholar

  • Hallert C, Grant C, Grehn S, Granno C, Hulten S, Midhagen, G, Strom M, Svensson H. Valdimarsson T. (2002). Evidence of poor vitamin status in celiac patients on a gluten-free diet for 10 years. Alimentary Pharmacology & Therapeutics 16: 1333-1339.PubMedGoogle Scholar

  • Hardell L, Eriksson M. (1999). A casecontrol study of non-Hodgkin lymphoma and exposure to pesticides. Cancer 85(6): 1353-1360.CrossrefGoogle Scholar

  • Hernanz, A, Polanco I. (1991). Plasma precursor amino acids of central nervous system monoamines in children with coeliac disease. Gut 32: 1478-1481.CrossrefPubMedGoogle Scholar

  • Herrmann W, Obeid R. (2012). Cobalamin defi ciency. Subcell Biochem 56: 301-22.CrossrefGoogle Scholar

  • Hershko C, Patz J. (2008). Ironing out the mechanism of anemia in celiac disease.PubMedGoogle Scholar

  • Haematologica 93(12): 1761-1765.PubMedGoogle Scholar

  • Hietanen E, Linnainmaa K, Vainio H. (1983). Eff ects of phenoxyherbicides and glyphosate on the hepatic and intestinal biotransformation activities in the rat. Acta Pharmacol Toxicol (Copenh). 53(2): 103-12.Google Scholar

  • Hildebrandt TM, Grieshaber MK. (2008). Three enzymatic activities catalyze the oxidation of sulfi de to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275(13): 3352-3361.Google Scholar

  • Hinks LJ, Inwards KD, Lloyd B, Clayton BE. (1984). Body content of selenium in coeliac disease. Br Med J 288: 1862-1863.CrossrefGoogle Scholar

  • Hoagland, RE, Duke SE. (1982). Biochemical eff ects of glyphosate. In Biochemical Responses Induced by Herbicides; Moreland, D. E., St. John, J. B., Hess, F. D., Eds.; ACS Symposium Series 181; American Chemical Society: Washington, DC, pp 175-205.Google Scholar

  • Hogberg L, Webb C, Falth-Magnusson K, Forslund T, Magnusson KE, Danielsson L, Ivarsson A, Sandstrom O, Sundqvist T. (2011). Children with screening- detected coeliac disease show increased levels of nitric oxide products in urine. Acta Paediatr 100(7): 1023-7.PubMedCrossrefGoogle Scholar

  • Holick MF. (2005). The Vitamin D Epidemic and its Health Consequences. J Nutr 135(11): 2739S-48S.Google Scholar

  • Homann PE. (1967). Studies on the manganese of the chloroplast. Plant Physiology 42: 997-1007.PubMedCrossrefGoogle Scholar

  • Hoppe H-W. (2013). Determination of Glyphosate residues in human urine samples from 18 European countries. Report Glyphosate MLHB-2013-06-06. Medical Laboratory Bremen, Haferwende 12, 28357 Bremen, Germany, March.Google Scholar

  • Huggins DR, Reganold JP. (2008). No till: the quiet revolution. Sci Am 99(1): 70-7.CrossrefGoogle Scholar

  • Iglesias P, Diez JJ. (2009). Thyroid dysfunction and kidney disease. European J Endocrinol 160: 503-515.CrossrefGoogle Scholar

  • Ingenbleek Y, Kimura H. (2013). Nutritional essentiality of sulfur in health and disease. Nutr Rev 71(7): 413-32.CrossrefPubMedGoogle Scholar

  • Ito N, Iwamori Y, Hanaoka K, Iwamori M. (1998). Inhibition of pancreatic elastase by sulfated lipids in the intestinal mucosa. J Biochem 123: 107-114.PubMedCrossrefGoogle Scholar

  • Iwasaki Y, Asai M, Yoshida M, Nigawara T, Kambayashi M, Nakashima N. (2004). Dehydroepiandrosterone-sulfate inhibits nuclear factor-κBdependent transcription in hepatocytes, possibly through antioxidant effect.Google Scholar

  • J Clin Endocrinol Metab 89(7): 3449- 3454.PubMedGoogle Scholar

  • Jabri B, Sollid LM. (2009). Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9(12): 858-870.PubMedCrossrefGoogle Scholar

  • Jansson EA, Huang L, Malkey R, Govoni M, Nihlen C, Olsson A, Stensdotter M, Petersson J, Holm L, Weitzberg E, Lundberg JO. (2008). A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol 4(7): 411-7.PubMedCrossrefGoogle Scholar

  • Jasper R, Locatelli GO, Pilati C, Locatelli C. (2012). Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate- Roundup. Interdiscip Toxicol 5(3): 133-140.PubMedGoogle Scholar

  • Jaya B, Hu L, Bauman JW, Fu SC, Reddi AS. (1993). Eff ect of galactose regimen on glomerular heparan sulfate synthesis and albumin excretion in diabetic rats. Res Commun Chem Pathol Pharmacol 80(2): 143-52.Google Scholar

  • Jetten AM, George MA, Pettit GR, Herald CL, Rearick JI. (1989). Action of phorbol esters, bryostatins, and retinoic acid on cholesterol sulfate synthesis: Relation to the multistep process of diff erentiation in human epidermal keratinocytes.Google Scholar

  • Journal of Investigative Dermatology 93: 108-115.Google Scholar

  • Kaplan MM, Ohkubo A, Quaroni EG, Sze-Tu D. (1983). Increased synthesis of rat liver alkaline phosphatase by bile duct ligation. Hepatology 3(3): 368-76.PubMedGoogle Scholar

  • Katz A, Dyck RF, Bear RA. (1979). Celiac disease associated with immune complex glomerulonephritis. Clin Nephrol 11(1): 39-44.PubMedGoogle Scholar

  • Kelly CP, Pothoulakis C, LaMont JT. (1994). Clostridium diffi cile colitis. N Engl J Med 330: 257-262.CrossrefGoogle Scholar

  • Kemppainen T, Kroger H, Janatuinen E, Arnala I, Kosma VM, Pikkarainen P, Julkunen R, Jurvelin J, Alhava E, Uusitupa M. (1999). Osteoporosis in adult patients with celiac disease. Bone 24(3): 249-255.PubMedCrossrefGoogle Scholar

  • Kiely T, Donaldson D, Grube A. (2004). Pesticides industry sales and usage -2000 and 2001 market estimates. U.S. Environmental Protection Agency; Washington DC, USA. Ref Type: Report.Google Scholar

  • Kim M, Cooke HJ, Javed NH, Carey HV, Christofi F, Raybould HE. (2001). D-glucose releases 5-hydroxytryptamine from human BON cells as a model of enterochromaffi n cells. Gastroenterology 121: 1400-1406.CrossrefGoogle Scholar

  • Kimmel GL, Kimmel CA, Williams AL, DeSesso JM. (2013). Evaluation of developmental toxicity studies of glyphosate with attention to cardiovascular development. Crit Rev Toxicol 43(2): 79-95.CrossrefPubMedGoogle Scholar

  • Kimura H (2011). Hydrogen sulfi de: its production and functions. Experimental Physiology 96: 833-835.Google Scholar

  • Kitchen LM, Witt WW, Rieck CE. (1981). Inhibition of chlorophyll accumulation by glyphosate. Weed Science 29: 513-516.Google Scholar

  • Klein NJ, Shennan GI, Heyderman RS, Levin M. (1992). Alteration in glycosaminoglycan metabolism and surface charge on humanumbilical vein endothelial cells induced by cytokines, endotoxin and neutrophils. J Cell Sci 102: 821-32.Google Scholar

  • Kohrle J. (2013). Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes 20(5): 441-8.PubMedCrossrefGoogle Scholar

  • Koning F. (2005). Celiac disease: caught between a rock and a hard place. Gastroenterology 129(4): 1294-1301.PubMedCrossrefGoogle Scholar

  • Koyama, T, Melzter HY. (1986). A biochemical and neuroendocrine study of the serotonergic system in depression. In: Hippius H, Klerman GL, Matussek N, Eds. New results in depression research. New York: Springer-Verlag, 1986: 164-88.Google Scholar

  • Krasinski SD, Cohn JS, Schaefer EJ, Russell RM. (1990). Postprandial plasma retinyl ester response is greater in older subjects compared with younger subjects. J Clin Invest 85: 883-92.PubMedCrossrefGoogle Scholar

  • Kruger M, Schrodl W, Neuhaus J, Shehata AA. (2013a). Field investigations of glyphosate in urine of Danish dairy cows. J Environ Anal Toxicol 3(5): 100186.Google Scholar

  • Kruger M, Shehata AA, Schrodl W, Rodloff A. (2013b). Glyphosate suppresses the antagonistic eff ect of Enterococcus spp. on Clostridium botulinum. Anaerobe 20: 74-78.CrossrefGoogle Scholar

  • Lai TS, Hausladen A, Slaughter TF, Eu JP, Stamler JS, Greenberg CS. (2001). Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biochemistry 40(16): 4904-10.PubMedCrossrefGoogle Scholar

  • Lamb DC, Kelly DE, Hanley SZ, Mehmood Z, Kelly SL. (1998). Glyphosate is an inhibitor of plant cytochrome P450: Functional expression of Thlaspi arvensae cytochrome P45071B1/reductase fusion protein in Escherichia coli. Biochem Biophys Res Commun 244: 110-114.Google Scholar

  • Lang CC, Brown RM, Kinirons MT, Deathridge MA, Guengerich FP, Kelleher D, O’Briain DS, Ghishan FK, Wood AJ. (1996). Decreased intestinal CYP3A in celiac disease: Reversal after successful gluten-free diet: a potential source of interindividual variability in fi rst-pass drug metabolism. Clin Pharmacol Ther 59(1): 41-6.CrossrefGoogle Scholar

  • Lapunzina P. (2002). Celiac disease and microcephaly. J Pediatr 140(1): 141-142.CrossrefGoogle Scholar

  • Laurin P, Falth-Magnusson K, Sundqvist T. (2003). Increase in nitric oxide urinary products during gluten challenge in children with coeliac disease. Scand J Gastroenterology 38(1): 55-60.CrossrefGoogle Scholar

  • Lee J-H, Lee J.(2010). Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34: 426-444.PubMedGoogle Scholar

  • Legendre BL, Gravois KA, Bischoff KP, Griffi n JL. (2005). Timing of glyphosate applications, alternatives to the use of glyphosate and response of new varieties to glyphosate in maximizing the yield of sugar per acre of Louisiana sugarcane in 2005. LSU AgCenter Sugarcane Ann Rep 182-191. Lerner A, Shapira Y, Agmon-Levin N, Pacht A, Ben-Ami Shor D, Lopez HM, Sanchez-Castanon M, Shoenfeld Y. (2012). The clinical signifi cance of 25OH-vitamin D status in celiac disease. Clin Rev Allergy Immunol 42(3): 322-30.Google Scholar

  • Leslie C, Mews C, Charles A, Ravikumara M. (2010). Celiac disease and eosinophilic esophagitis: a true association. J Pediatr Gastroenterol Nutr 50(4): 397-9.PubMedGoogle Scholar

  • LiH, Liu X, Cui H, Chen Y-R, Cardounel AJ, Zweier JL. (2006). Characterization of the mechanism of cytochrome P450 reductase-cytochrome P450-mediated nitric oxide and nitrosothiol generation from organic nitrates. JBC 281(18): 12546-12554.Google Scholar

  • Li L, Rose P, Moore PK. (2011). Hydrogen sulfi de and cell signaling. Annu Rev Pharmacol Toxicol 51: 169-87.CrossrefGoogle Scholar

  • Liacouras CA, Furuta GT, Hirano I, Atkins D, Attwood SE, Bonis PA, Burks AW, Chehade M, Collins MH, Dellon ES, Dohil R, Falk GW, Gonsalves N, Gupta SK, Katzka DA, Lucendo AJ, Markowitz JE, Noel RJ, Odze RD, Putnam PE, Richter JE, Romero Y, Ruchelli E, Sampson HA, Schoepfer A, Shaheen NJ, Sicherer SH, Spechler S, Spergel JM, Straumann A, Wershil BK, Rothenberg ME, Aceves SS. (2011). Eosinophilic esophagitis: Updated consensus recommendations for children and adults. J Allergy Clin Immunol 128: 3-20.CrossrefPubMedGoogle Scholar

  • Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venalainen J, Maki M, Kaukinen K. (2008). Live probiotic Bifi dobacterium lactis bacteria inhibit the toxic eff ects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol 152(3): 552-558.CrossrefGoogle Scholar

  • Lindros KO. (1997). Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver. Gen Pharmacol 28(2): 191-196.Google Scholar

  • Logan RF, Rifkind EA, Turner ID. (1989). Ferguson A. Mortality in celiac disease. Gastroenterology 97: 265-271.PubMedGoogle Scholar

  • Lorand L, Graham RM. (2003). Transglutaminases: Crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4: 140-156.CrossrefPubMedGoogle Scholar

  • Lorbek G, Lewinska M, Rozman D. (2012). Cytochrome P450s in the synthesis of cholesterol and bile acids-from mouse models to human diseases. FEBS J 279(9): 1516-33.Google Scholar

  • Lu W, Li L, Chen M, Zhou Z, Zhang W, Ping S, Yan Y, Wang J, Lin M. (2013). Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent in- hibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Mol Biosyst 9: 522-530.CrossrefGoogle Scholar

  • Lucendo AJ, Sanchez-Cazalilla M. (2012). Adult versus pediatric eosinophilic esophagitis: Important diff erences and similarities for the clinician to understand. Expert Rev Clin Immunol 8(8): 733-45.CrossrefGoogle Scholar

  • Madsen HEL, Christensen HH, Gottlieb-Petersen C. (1978). Stability constants of copper(II), zinc, manganese(II), calcium, and magnesium complexes of N-(phosphonomethyl)glycine (glyphosate). Acta Chem Scand 32: 79-83.CrossrefGoogle Scholar

  • Manocha M, Khan WI. (2012). Serotonin and GI disorders: An update on clinical and experimental studies. Clin Transl Gastroenterol 3: e13.CrossrefPubMedGoogle Scholar

  • Marteau P, Cadranel JF, Messing B, Gargot D, Valla D, Rambaud JC. (1994). Association of hepatic vein obstruction and coeliac disease in North African subjects. J Hepatol 20: 650-653.PubMedCrossrefGoogle Scholar

  • Martinelli P, Troncone R, Paparo F, Torre P, Trapanese E, Fasano C, Lamberti A, Budillon G, Nardone G, Greco L. (2000). Coeliac disease and unfavourable outcome of pregnancy. Gut 46(3): 332-335.PubMedCrossrefGoogle Scholar

  • Matheus-Vliezen EME, Van Halteran H, Tylgut GNJ. (1994). Malignant lymphoma in coeliac disease: various manifestations with distinct symptomatology and prognosis? J Intern Med 236(1): 43-9.CrossrefGoogle Scholar

  • Maton PN, Selden AC, Fitzpatrick ML, Chadwick VS. (1985). Defective gallbladder emptying and cholecystokinin release in celiac disease. Reversal by gluten-free diet. Gastroenterology 88(2): 391-6.PubMedGoogle Scholar

  • McDuffi e HH, Pahwa P, McLaughlin JR, Spinelli JJ, Fincham S, Dosman JA, Robson D, Skinnider LF, Choi NW. (2001). Non-Hodgkins lymphoma and specifi c pesticide exposures in men: Cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev 10(11): 1155-1163.Google Scholar

  • Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. (2008). Bifi dobacterium strains suppress in vitro the pro-infl ammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Infl amm (Lond) 5: 19.Google Scholar

  • Meloni GF, Dessole S, Vargiu N, Tomasi PA, Musumeci S (1999). The prevalence of coeliac disease in infertility. Hum Reprod 14(11): 2759-2761.CrossrefPubMedGoogle Scholar

  • Mishra A, Rothenberg ME. (2003). Intratracheal IL-13 induces eosinophilic esophagitis by an IL-5, eotaxin-1, and STAT6 dependent mechanism. Gastroenterology 125: 1419-1427.Google Scholar

  • Miteva L, Ivanov S, Alexieva V, Karanov E. (2003). Eff ect of herbicide glyphosate on glutathione levels, glutathione-S-transferase and glutathione reductase activities in two plant species. Comptes Rendus de l’Academie Bulgare des Sciences 56: 79-84.Google Scholar

  • Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C. (2013). Intramitochondrial hydrogen sulfi de production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron fl ow and supports cellular bioenergetics. FASEB J 27(2): 601-11.CrossrefGoogle Scholar

  • Monsanto International Sarl. (2010). The agronomic benefi ts of glyphosate in Europe. Review of the benefi ts of glyphosate per market use. Monsanto Europe SA. www.monsanto.com/products/Documents/glyphosate-background-materials/Agronomic%20benefits%20of%20glyphosate%20in%20Europe.pdf [Last accessed Sep. 4, 2013].Google Scholar

  • Monsanto Technology LLC, Missouri. (2010). Glyphosate formulations and their use for the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase. US Patent number 7771736 B2. https: //www.google.com/patents/ US7771736. [Last accessed Sep. 1, 2013] Motekaitis RJ, Martell AE. (1985). Metal chelate formation by N-phosphonomethylglycine and related ligands. J Coord Chem 14: 139-149.Google Scholar

  • Mora JR, Iwata M, von Andrian UH. (2008). Vitamin eff ects on the immune system: Vitamins A and D take centre stage. Nat Rev Immunol 8(9): 685-98.CrossrefGoogle Scholar

  • Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H. (2007). Reciprocal TH17 and regulatory T cell diff erentiation mediated by retinoic acid. Science 317(5835): 256-260.Google Scholar

  • Murch SH. (1995). Sulphation of proteoglycans and intestinal function. J Gastroenterol Hepatol 10: 210-12.CrossrefPubMedGoogle Scholar

  • Murch SH, MacDonald TT, Walker-Smith JA, Levin M, Lionetti P, Klein NJ. (1993). Disruption of sulphated glycosaminoglycans in intestinal infl ammation. Lancet 341: 711-14.Google Scholar

  • Murch SH, Winyard PJ, Koletzko S, Wehner B, Cheema HA, Risdon RA, Phillips AD, Meadows N, Klein NJ, Walker-Smith JA. (1996). Congenital enterocyte heparan sulphate defi ciency with massive albumin loss, secretory diarrhoea, and malnutrition. Lancet 347(9011): 1299-301.CrossrefGoogle Scholar

  • Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. (2007). Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56: 1669-74.CrossrefPubMedGoogle Scholar

  • Nafziger ED, Widholm JM, Steinrucken HC, Killmer JL. (1984). Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol 76(3): 571-4.PubMedCrossrefGoogle Scholar

  • Nalewaja JD, Matysiak R. (1993). Infl uence of diammonium sulfate and other salts on glyphosate phytotoxicity. Pesticide Science 38: 77-84.CrossrefGoogle Scholar

  • Nanda S. (2011). Celiac disease: Retinoic acid and IL-15 jointly implicated in reversal of oral tolerance. Nat Rev Gastroenterol Hepatol 8: 181.CrossrefGoogle Scholar

  • Negri E. (2010). Sun exposure, vitamin D, and risk of Hodgkin and non-Hodgkin lymphoma. Nutr Cancer 62(7): 878-82.CrossrefPubMedGoogle Scholar

  • Nelson MA, Porterfi eld BW, Jacobs ET, Clark LC. (1999). Selenium and prostate cancer prevention. Semin Urol Oncol 17(2): 91-6.Google Scholar

  • Network Coordinating Council. (May, 2013). 2012 Annual Report. End Stage Renal Disease Network 13. http: //www.network13.org/PDFs/NW13 Annual Report 2012 Final.pdf [Last accessed Sept 3, 2013] Nielsen OH, Jacobsen O, Pedersen ER, Rasmussen SN, Petri M, Laulund S, Jarnum S. (1985). Non-tropical sprue. Malignant diseases and mortality rate. Scand J Gastroenterol 20: 13-18.Google Scholar

  • Niwa T. (2010). Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr 20(5 Suppl): S2-6.CrossrefGoogle Scholar

  • Nomura NS, Hilton HW. (1977). The adsorption and degradation of glyphosate in fi ve Hawaiian sugarcane soils. Weed Res 17: 113-121.CrossrefGoogle Scholar

  • O’Keeff e MG. (1980). The control of Agropyron repens and broad-leaved weeds pre-harvest of wheat and barley with the isopropylamine salt of glyphosate.Google Scholar

  • Proceedings of British Crop Protection Conference - Weeds, 53-60.Google Scholar

  • O’Keeff e MG.(1981). The control of perennial grasses by pre-harvest applications of glyphosate. Proceedings of the Conference on Grass Weeds in Cereals in the United Kingdom. Association of Applied Biologists, Warwick, UK, 137-144.Google Scholar

  • Orgeron AJ. (2012). Sugarcane growth, sucrose content, and yield response to the ripeners glyphosate and trinexapacethyl. PhD Dissertation, School of Plant, Environmental, and Soil Sciences, Louisiana State University.Google Scholar

  • Orson JH, Davies DKH. (2007). Pre-harvest glyphosate for weed control and as a harvest aid in cereals. Research Review No. 65. HGCA. Paganelli A, Gnazzo V, Acosta H, Lopez SL, Carrasco AE. (2010). Glyphosatebased herbicides produce teratogenic eff ects on vertebrates by impairing retinoic acid Signaling. Chem Res Toxicol 23: 1586-1595.Google Scholar

  • Papp LV, Lu J, Holmgren A, Khanna KK. (2007). From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antiox Redox Signal 9: 775-806.CrossrefGoogle Scholar

  • Patel RS, Johlin FC Jr, Murray JA. (1999). Celiac disease and recurrent pancreatitis. Gastrointest Endosc 50(6): 823-827.CrossrefPubMedGoogle Scholar

  • Pavkov KL, Turnier JC. (1986). 2-Year chronic toxicity and oncogenicity dietary study with SCm-0224 in mice. T-11813. Farmington: Stauff er Chemical Company.Google Scholar

  • Peixoto F. (2005). Comparative eff ects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere 61(8): 1115-1122.CrossrefGoogle Scholar

  • Peraza S, Wesseling C, Aragon A, Leiva R, Garca-Trabanino RA, Torres C, Jakobsson K, Elinder C, Hogstedt C. (2012). Decreased kidney function among agriculture workers in El Salvador. Am J Kidney Dis 59: 531-540.PubMedCrossrefGoogle Scholar

  • Pessione E. (2012). Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Front Cell Infect Microbiol 2: 86.PubMedGoogle Scholar

  • Peters U, Askling J, Gridley G, Ekbom A, Linet M. (2003). Causes of death in patients with celiac disease in a population-based Swedish cohort. Arch Intern Med 163(13): 1566-1572.CrossrefGoogle Scholar

  • Ponchon G, Kennan AL, DeLuca HF. (1969). Activation of vitamin D by the liver. J Clin Invest 48(11): 2032-2037.PubMedCrossrefGoogle Scholar

  • Prabhakar R, Morokuma K, Musaev DG. (2006). Peroxynitrite reductase activity of selenoprotein glutathione peroxidase: A computational study. Biochemistry 45: 6967-6977.CrossrefPubMedGoogle Scholar

  • Prasad GA, Alexander JA, Schleck CD, Zinsmeister AR, Smyrk TC, Elias RM, Locke GR 3rd, Talley NJ. (2009). Epidemiology of eosinophilic esophagitis over three decades in Olmsted County, Minnesota. Clin Gastroenterol Hepatol 7: 1055-1061.CrossrefGoogle Scholar

  • Pricolo VE, Mangi AA, Aswad B, Bland KI. (1998). Gastrointestinal malignancies in patients with celiac sprue. Am J Surg 176: 344-7.CrossrefPubMedGoogle Scholar

  • Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ, LaMarche A, Maroney AC, Johnson EM Jr. (2003). JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38(6): 899-914.CrossrefPubMedGoogle Scholar

  • Qiao S-W, Bergseng E, Molberg, O, Jung G, Fleckenstein B, Solli LM. (2005).Google Scholar

  • Refi ning the Rules of Gliadin T Cell Epitope Binding to the Disease-Associated DQ2 Molecule in Celiac Disease: Importance of Proline Spacing and Glutamine Deamidation. J Immunol 175(1): 254-261.Google Scholar

  • Ramirez-Rubio O, Brooks DR, Amador JJ, Kaufman JS, Weiner DE, Scammell MK. (2013). Chronic kidney disease in Nicaragua: A qualitative analysis of semi-structured interviews with physicians and pharmacists. MC Public Health 13: 350.Google Scholar

  • Refsum H, Yajnik CS, Gadkari M, Schneede J, Vollset SE, Orning L, Guttormsen AB, Joglekar A, Sayyad MG, Ulvik A, Ueland PM. (2001). Hyperhomocysteinemia and elevated methylmalonic acid indicate a high prevalence of cobalamin defi ciency in Asian Indians. Am J Clin Nutr 74: 233-41.Google Scholar

  • Relyea RA. (2005). The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15: 1118-1124.CrossrefGoogle Scholar

  • Richard EP Jr, Dalley CD. (2009). Eff ects of glyphosate ripener timing and rate on cane and sugar yields. J Am Soc Sug Cane Technol 29: 81-82.Google Scholar

  • Rivabene R, Mancini E, Vincenzi M. (1999). In vitro cytotoxic e!ect of wheat gliadin-derived peptides on the Caco-2 intestinal cell line is associated with intracellular oxidative imbalance: implications for coeliac disease. Biochi Biophys Acta 1453: 152-160.Google Scholar

  • Rodriguez-Iturbe B, Garca Garca G. (2010). The role of tubulointerstitial infl ammation in the progression of chronic renal failure. Nephron Clin Pract 116: c81-c88CrossrefGoogle Scholar

  • Roe DA. (1971). Eff ects of methionine and inorganic sulfate on indole toxicity and indican excretion in rats. J Nutr 101(5): 645-53.Google Scholar

  • Rossi M, Amaretti A, Raimondi S. (2011). Folate production by probiotic bacteria. Nutrients 3(1): 118-34.CrossrefPubMedGoogle Scholar

  • Rubio-Tapia A, Kyle RA, Kaplan EL, Johnson DR, Page W, Erdtmann F, Brantner TL, Kim WR, Phelps TK, Lahr BD, Zinsmeister AR, Melton LJ 3rd, Murray JA. (2009). Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 137(1): 88-93.CrossrefGoogle Scholar

  • Rude RK, Olerich M. (1996). Magnesium defi ciency: possible role in osteoporosis associated with gluten-sensitive enteropathy. Osteoporos Int 6(6): 453-61.CrossrefGoogle Scholar

  • Russell RM. (2000). The vitamin A spectrum: From defi ciency to toxicity. Am J Clin Nutr 71: 878-84.Google Scholar

  • Saad RJ, Chey WD. (2006). Review article: Current and emerging therapies for functional dyspepsia. Aliment Pharmacol Ther 24(3): 475-492.PubMedCrossrefGoogle Scholar

  • Saes Zobiole LH, de Oliveira RS Jr, Kremer RJ, Muniz AS, de Oliveira, A Jr. (2010). Nutrient accumulation and photosynthesis in glyphosate-resistant soybeans is reduced under glyphosate use. J Plant Nutr 33: 1860-1873.CrossrefGoogle Scholar

  • Saibeni S, Lecchi A, Meucci G, Cattaneo M, Tagliabue L, Rondonotti E, Formenti S, De Franchis R, Vecchi M. (2005). Prevalence of hyperhomocysteinemia in adult gluten-sensitive enteropathy at diagnosis: Role of B12, folate, and genetics. Clin Gastroenterol Hepatol 3: 574-580.CrossrefPubMedGoogle Scholar

  • Sakaki T, Kagawa N, Yamamoto K, Inouye K. (2005). Metabolism of vitamin D3 by cytochromes P450. Front Biosci 10: 119-34.Google Scholar

  • Sammons RD, Gruys KJ, Anderson KS, Johnson KA, Sikorski JA. (1995). Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: Identifi - cation of an EPSP synthase.EPSP.glyphosate ternary complex. Biochemistry 34(19): 6433-40.CrossrefGoogle Scholar

  • Samsel A, Seneff S. (2013). Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases. Entropy 15: 1416-1463.Google Scholar

  • Sanoff SL, Callejas L, Alonso CD, Hu Y, Colindres RE, Chin H, Morgan DR, Hogan SL. (2010). Positive association of renal insuffi ciency with agriculture employment and unregulated alcohol consumption in Nicaragua. Ren Fail 32: 766-777.CrossrefGoogle Scholar

  • Sanz Y, De Palma G, Laparra M. (2011). Unraveling the ties between celiac disease and intestinal microbiota. International Reviews of Immunology 30(4): 207-218.CrossrefPubMedGoogle Scholar

  • Selvapandiyan A, Majumder K, Fattah FA, Ahmad S, Arora N, Bhatnagar RK. (1995). Point mutation of a conserved arginine (104) to lysine introduces hypersensitivity to inhibition by glyphosate in the 5-enolpyruvylshikimate-3-phosphate synthase of Bacillus subtilis. FEBS Lett 374(2): 253-6.Google Scholar

  • Senapati T, Mukerjee AK, Ghosh AR. (2009). Observations on the eff ect of glyphosate based herbicide on ultra structure (SEM) and enzymatic activity in diff erent regions of alimentary canal and gill of Channa punctatus (Bloch). Journal of Crop and Weed 5(1): 236-245.Google Scholar

  • Seneff S, Lauritzen A, Davidson R, Lentz-Marino L. (2012). Is endothelial nitric oxide synthase a moonlighting protein whose day job is cholesterol sulfate synthesis? Implications for cholesterol transport, diabetes and cardiovascular disease. Entropy 14: 2492-2530.CrossrefGoogle Scholar

  • Shapira Y, Agmon-Levina N, Shoenfeld Y. (2010). Defi ning and analyzing geoepidemiology and human autoimmunity. Journal of Autoimmunity 34: J168-J177.CrossrefGoogle Scholar

  • Shehata AA, Schrodl W, Aldin AA, Hafez HM, Kruger M. (2013). The eff ect of glyphosate on potential pathogens and benefi cial members of poultry microbiota in vitro. Curr Microbiol 66: 350-358.CrossrefGoogle Scholar

  • Sher L. (2000). Selenium and human health. Lancet 356: 233-241.Google Scholar

  • Singhal N, Alam S, Sherwani R, Musarrat J. (2008). Serum zinc levels in celiac disease. Indian Pediatr 45(4): 319-21.PubMedGoogle Scholar

  • Smecuol E, Hwang HJ, Sugai E, Corso L, Cheravsky AC, Bellavite FP, Gonzalez A, Vodanovich F, Moreno ML, Vazquez H, Lozano G, Niveloni S, Mazure R, Meddings J, Maurio E, Bai JC. (2013). Exploratory, randomized, doubleblind, placebo-controlled study on the eff ects of Bifi dobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol 47(2): 139-47.CrossrefGoogle Scholar

  • Soderland P, Lovekar S, Weiner DE, Brooks DR, Kaufman JS. (2010). Chronic kidney disease associated with environmental toxins and exposures. Adv Chronic Kidney Dis 17(3): 254-64.PubMedGoogle Scholar

  • Sonnenberg A, McCarty DJ, Jacobsen SJ. (1991). Geographic variation of infl ammatory bowel disease within the United States. Gastroenterology 100: 143e9.Google Scholar

  • State-Specifi c Trends in Chronic Kidney Failure -United States, 1990-2001. http: //www.cdc.gov/mmwr/preview/mmwrhtml/mm5339a3.htm. [Last accessed Sept. 3, 2013] Stride CD, Edwards RV and Seddon JC. (1985). Sward destruction by application of glyphosate before cutting or grazing. British Crop Protection Conference - Weeds 7B-6, 771-778.Google Scholar

  • Subiros JF. (1990). The eff ect of applying glyphosate as ripener in three varieties. Turrialba 40(4): 527-534.Google Scholar

  • Sulik KK, Cook CS, Webster WS. (1988) Teratogens and craniofacial malformations: relationships to cell death. Development 103 Suppl: 213-231. Sun C-Y, Hsu H-H, Wu M-S. (2012). p-Cresol sulfate and indoxyl sulfate induce similar cellular infl ammatory gene expressions in cultured proximal renal tubular cells. Nephrol Dial Transplant 28(1): 70-8.Google Scholar

  • Sunergren KP, Fairman RP, deBlois GG, Glauser FL. (1987). Eff ects of protamine, heparinase and hyaluronidase on endothelial permeability and surface charge. J Appl Physiol 63: 1987-92.Google Scholar

  • Taimi M, Helvig C, Wisniewski J, Ramshaw H, White J, Amad M, Korczak B, Petkovich M. (2004). A novel human cytochrome P450, CYP26C1, involved in metabolism of 9-cis and all-trans isomers of retinoic acid. J Biol Chem 279: 77-85.Google Scholar

  • Tamm AO. (1984). Biochemical activity of intestinal microfl ora in adult coeliac disease. Nahrung 28(6-7): 711-5.CrossrefGoogle Scholar

  • Thacher SM, Coe EL, Rice RH. (1985). Retinoid suppression of transglutaminase activity and envelope competence in cultured human epidermal carcinoma cells: Hydrocortisone is a potent antagonist of retinyl acetate but not retinoic acid. Diff erentiation 29(1): 82-87.Google Scholar

  • Thompson WW, Weier TE. (1962). The fi ne structure of chloroplasts from mineral- defi cient leaves of Phaseolus vulgaris. Am J Bot 49: 1047-1056.CrossrefGoogle Scholar

  • Tieri P, Termanini A, Bellavista E, Salvioli S, Capri M, Franceschi C. (2012). Charting the NF-κB pathway interactome map. PLoS One 7(3): e32678.CrossrefGoogle Scholar

  • Tonelli M, Sacks F, Pfeff er M, Jhangri GS, Curhan G; Cholesterol and Recurrent Events (CARE) Trial Investigators. (2005). Biomarkers of infl ammation and progression of chronic kidney disease. Kidney Int 68: 237-245.CrossrefGoogle Scholar

  • Torres C, Aragon A, Gonzalez M, Lopez I, Jakobsson K, Elinder CG, Lundberg I, Wesseling C. (2010). Decreased kidney function of unknown cause in Nicaragua: a community-based survey. Am J Kidney Dis 55: 485-496.PubMedCrossrefGoogle Scholar

  • Trabanino RG, Aguilar R, Silva CR, Mercado MO, Merino RL. (2002). End-stage renal disease among patients in a referral hospital in El Salvador. Rev Panam Salud Publica 12: 202-206. [article in Spanish] Triggiani V, Tafaro E, Giagulli VA, Sabba C, Resta F, Licchelli B, Guastamacchia E. (2009). Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr Metab Immune Disord Drug Targets 9(3): 277-94.CrossrefGoogle Scholar

  • Turnbull J, Powell A, Guimond S. (2001). Heparan sulfate: Decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11: 75-82.PubMedCrossrefGoogle Scholar

  • Tursi A, Brandimarte G, Giorgetti G. (2003). High prevalence of small intestinal bacterial overgrowth in celiac patients with persistence of gastrointestinal symptoms after gluten withdrawal. Am J Gastroenterol 98: 839-843.PubMedCrossrefGoogle Scholar

  • Uggla C, Moritz T, Sandberg G, Sundberg B. (1996). Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci U S A 93(17): 9282-86.CrossrefGoogle Scholar

  • Undabeytia TS, Morillo E, Maqueda C. (2002). FTIR study of glyphosate-copper complexes. J Agric Food Chem 50: 1918-1921.PubMedCrossrefGoogle Scholar

  • Valentino R, Savastano S, Maglio M, Paparo F, Ferrara F, Dorato M, Lombardi G, Troncone R. (2002). Markers of potential coeliac disease in patients with Hashimoto’s thyroiditis. Eur J Endocrinol 146: 479-483.CrossrefGoogle Scholar

  • Vencill WK (ed) (2002). Herbicide handbook. 8th ed. Weed Science Society of America, Lawrence, KS. USA.Google Scholar

  • Vernier RL, Klein DJ, Sisson SP, Mahan JD, Oegema TR, Brown DM. (1983). Heparan sulphate-rich anionic sites in the human glomerular basement membrane: decreased concentration in congential nephrotic syndrome. N Engl J Med 309: 1001-9.Google Scholar

  • Vigfusson NV, Vyse ER. (1980).The eff ect of the pesticides, Dexon, Captan and Roundup, on sister-chromatid exchanges in human lymphocytes in vitro. Mutat Res 79: 53-7.CrossrefGoogle Scholar

  • Waltz E. (2010). Glyphosate resistance threatens Roundup hegemony. Nat Biotechnol 28: 537-538.CrossrefPubMedGoogle Scholar

  • Welander A, Prutz KG, Fored M, Ludvigsson JF. (2012). Increased risk of endstage renal disease in individuals with coeliac disease. Gut 61(1): 64-8.CrossrefGoogle Scholar

  • Wheeler EE, Challacombe DN. (1984). Quantifi cation of enterochromaffi n cells with serotonin immunoreactivity in the duodenal mucosa in coeliac disease. Arch Dis Child 59: 523-527.CrossrefGoogle Scholar

  • Whorwell PJ, Altringer L, Morel J, Bond Y, Charbonneau D, O’Mahony L, Kiely B, Shanahan F, Quigley EM. (2006). Effi cacy of an encapsulated probiotic Bifi dobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 101(7): 1581-90.CrossrefGoogle Scholar

  • Wikvall K. (2001). Cytochrome P450 enzymes in the bioactivation of vitamin D to its hormonal form (review). Int J Mol Med 7(2): 201-9.Google Scholar

  • Williams GM, Kroes R, Munro IC. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31(2 Pt 1): 117-165.CrossrefPubMedGoogle Scholar

  • Zafl arska-Popławska A, Siomek A, Czerwionka-Szafl arska M, Gackowski D, Rozalski R, Guz J, Szpila A, Zarakowska E, Olinski R. (2010). Oxidatively damaged DNA/oxidative stress in children with celiac disease. Cancer Epidemiol Biomarkers Prev 19(8): 1960-1965.Google Scholar

  • Zenjari T, Boruchowicz A, Desreumaux P, Laberenne E, Cortot A, Colombel JF. (1995). Association of coeliac disease and portal venousthrombosis. Gastroenterol Clin Biol. 19: 953-954.Google Scholar

  • Zhao F-J, Lopez-Bellido FJ, Gray CW, Whalley WR, Clark LJ, McGrath SP. (2007). Science of The Total Environment 372(2-3): 433-439.Google Scholar

  • Ziolkowski AF, Popp SK, Freeman C, Parish CR, Simeonovic CJ. (2012). Heparan sulfate and heparanase play key roles in mouse cell survival and autoimmune diabetes. J Clin Invest 122(1): 132-141.CrossrefPubMedGoogle Scholar

  • Zouaoui K, Dulaurent S, Gaulier JM, Moesch C, Lachatre G. (2013). Determination of glyphosate and AMPA in blood and urine from humans: About 13 cases of acute intoxication. Forensic Sci Int 226(1-3): e20-5 Google Scholar

About the article

Published Online: 2014-03-11

Published in Print: 2013-12-01


Citation Information: Interdisciplinary Toxicology, ISSN (Online) 1337-9569, ISSN (Print) 1337-6853, DOI: https://doi.org/10.2478/intox-2013-0026.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in