Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Invertebrate Immunity

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Antiviral immunity and protection in penaeid shrimp

Darren J. Underwood / Jeff A. Cowley
  • CSIRO Food Futures National Flagship, CSIRO Animal, Food & Health Sciences, St Lucia, QLD, 4067 Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karyn N. Johnson
Published Online: 2013-07-15 | DOI: https://doi.org/10.2478/invim-2013-0001


The global aquaculture of penaeid shrimp has recently undergone a huge expansion resulting in production near parity with quantities trawled from the wild. Despite this apparent success, the industry has been hindered by diseases, predominantly from virus infection, which result in losses that have been estimated at 40% of the global production capacity. An increased research focus on penaeid immune response to virus infection has ensued, with an emphasis on harnessing the immune system to protect cultured shrimp from virus infection. Here we review the current knowledge of the factors implicated in the penaeid shrimp immune response to viral infection and strategies based on these discoveries that have been examined as potential avenues for disease control. Immune priming has been observed in response to challenge with White spot syndrome virus following prior exposure to virus or viral components. We review the protection achieved following immune priming with these components, the specificity and duration as well as the generality of the response and discuss potential mechanisms that may facilitate immune priming. In addition we highlight challenges associated with future research directions.

Keywords: Immune priming; virus; Gill-associated virus; White spot syndrome virus; prawns; invertebrate immunity; invertebrate virus


  • [1] Flegel T.W., Sritunyalucksana K., Shrimp molecular responses to viral pathogens, Mar Biotechnol., 2010, 13, 587-607 Google Scholar

  • [2] Lotz J.M., Viruses, biosecurity and specific pathogen-free stocks in shrimp aquaculture, World J Microb Biot., 1997, 13, 405-413 CrossrefGoogle Scholar

  • [3] Lundin C.G., Global attempts to address shrimp disease, 1996, The World Bank: Shrimp farming and the environment. Google Scholar

  • [4] Flegel T.W., Lightner D.V., Lo C.F., Owens, L., Shrimp disease control: past, present and future, Asian Fisheries Society, Manila, Philippines, 2008 Google Scholar

  • [5] Flegel T.W., Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand, World J Microb Biot., 1997, 13, 433-442 CrossrefGoogle Scholar

  • [6] Flegel T.W., Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand, Aquaculture, 2006, 258, 1-33 Google Scholar

  • [7] Flegel T.W., Nielsen L., Thamavit V., Kongtim S., Pasharawipas T., Presence of multiple viruses in non-diseased, cultivated shrimp at harvest, Aquaculture, 2004, 240, 55-68 Google Scholar

  • [8] Lightner D.V., Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): A review, J Invertebr Pathol., 2011, 106, 110-130 CrossrefGoogle Scholar

  • [9] Wang Q., Poulos B.T., Lightner D.V., Protein analysis of geographic isolates of shrimp white spot syndrome virus, Arch Virol., 2000, 145, 263-274 Google Scholar

  • [10] Moss S.M., Moss D.R., Arce S.M., Lightner D.V., Lotz J.M., The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture, J Invertebr Pathol., 2012, 110, 247-250 CrossrefGoogle Scholar

  • [11] Stentiford G.D., Neil D.M., Peeler E.J., Shields J.D., Small H.J., Flegel T.W., et al., Disease will limit future food supply from the global crustacean fishery and aquaculture sectors, J Invertebr Pathol., 2012, 110, 141-157 CrossrefGoogle Scholar

  • [12] Boehm T., Evolution of Vertebrate Immunity, Curr Biol., 2012, 22, R722-R732 CrossrefGoogle Scholar

  • [13] Söderhäll K., Thornqvist P.-O., Crustacean immunity - a short review, Dev Biol Stand., 1997, 90, 45-51 Google Scholar

  • [14] Hoffmann J.A., Reichhart J.-M., Drosophila innate immunity: an evolutionary perspective, Nat Immunol., 2002, 3, 121- 126 CrossrefGoogle Scholar

  • [15] Iwanaga S., Lee B.L., Recent advances in the innate immunity of invertebrate animals, J Biochem Mol Biol., 2005, 38, 128-150 CrossrefGoogle Scholar

  • [16] Janeway C.A., Medzhitov R., Innate immune recognition, Annu Rev Immunol., 2002, 20, 197-216 CrossrefGoogle Scholar

  • [17] Medzhitov R., Janeway Jr C.A., Innate immunity: impact on the adaptive immune response, Curr Opin Immunol., 1997, 9, 4-9 CrossrefGoogle Scholar

  • [18] Little T.J., Hultmark D., Read A.F., Invertebrate immunity and the limits of mechanistic immunology, Nat Immunol., 2005, 6, 651-4 CrossrefGoogle Scholar

  • [19] Söderhäll K., Invertebrate immunity, Dev Comp Immunol., 1999, 23, 263-266 Google Scholar

  • [20] Lackie A.M., Invertebrate immunity, Parasitology, 1980, 80, 393-412 CrossrefGoogle Scholar

  • [21] Aderem A., Ulevitch R.J., Toll-like receptors in the induction of the innate immune response, Nature, 2000, 406, 782-787 Google Scholar

  • [22] Medzhitov R., Janeway Jr C.A., Innate immune recognition: mechanisms and pathways, Immunol Rev., 2000, 173, 89- 97 Google Scholar

  • [23] Imler J.-L., Hoffmann J.A., Signaling mechanisms in the antimicrobial host defense of Drosophila, Curr Opin Microbiol., 2000, 3, 16-22 CrossrefGoogle Scholar

  • [24] Yang L.-S., Yin Z.-X., Liao J.-X., Huang X.-D., Guo C.-J., Weng S.-P., et al., A Toll receptor in shrimp, Mol Immunol., 2007, 44, 1999-2008 CrossrefGoogle Scholar

  • [25] Arts J.A.J., Cornelissen F.H.J., Cijsouw T., Hermsen T., Savelkoul H.F.J., Stet R.J.M., Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon, Fish Shellfish Immun., 2007, 23, 504-513 CrossrefGoogle Scholar

  • [26] Liu H., Soderhall K., Jiravanichpaisal P., Antiviral immunity in crustaceans, Fish Shellfish Immun., 2009, 27, 79-88 CrossrefGoogle Scholar

  • [27] Vazquez L., Alpuche, J., Maldonado G., Agundis C., Pereyra- Morales A., Zenteno E., Review: Immunity mechanisms in crustaceans, Innate Immun., 2009, 15, 179-188 CrossrefGoogle Scholar

  • [28] Lemaitre B., Hoffmann J., The host defense of Drosophila melanogaster, Annu Rev Immunol., 2007, 25, 697-743 CrossrefGoogle Scholar

  • [29] Sideri M., Tsakas S., Markoutsa E., Lampropoulou M., Marmaras V.J., Innate immunity in insects: surfaceassociated dopa decarboxylase-dependent pathways regulate phagocytosis, nodulation and melanization in medfly haemocytes, Immunology, 2008, 123, 528-537 CrossrefGoogle Scholar

  • [30] Hauton C., The scope of the crustacean immune system for disease control, J Invertebr Pathol., 2012, 110, 251-260 CrossrefGoogle Scholar

  • [31] Söderhäll K., Cerenius, L., Crustacean immunity, Annual Review of Fish Diseases, 1992, 2, 3-23 Google Scholar

  • [32] Sritunyalucksana K., Lee S.Y., Soderhall K., A [beta]-1,3- glucan binding protein from the black tiger shrimp, Penaeus monodon, Dev Comp Immunol., 2002, 26, 237-245 Google Scholar

  • [33] Vargas-Albores F., Yepiz-Plascencia G., Beta glucan binding protein and its role in shrimp immune response, Aquaculture, 2000, 191, 13-21 Google Scholar

  • [34] Rojtinnakorn J., Hirono I., Itami T., Takahashi Y., Aoki T., Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach, Fish Shellfish Immun., 2002, 13, 69-83 CrossrefGoogle Scholar

  • [35] Dhar A.K., Dettori A., Roux M.M., Klimpel K.R., Read B., Identification of differentially expressed genes in shrimp (Penaeus stylirostris) infected with White spot syndrome virus by cDNA microarrays, Arch Virol., 2003, 148, 2381-96 Google Scholar

  • [36] He N., Liu H., Xu X., Identification of genes involved in the response of haemocytes of Penaeus japonicus by suppression subtractive hybridization (SSH) following microbial challenge, Fish Shellfish Immun., 2004, 17, 121- 128 CrossrefGoogle Scholar

  • [37] He N., Qin Q., Xu X., Differential profile of genes expressed in hemocytes of White Spot Syndrome Virus-resistant shrimp (Penaeus japonicus) by combining suppression subtractive hybridization and differential hybridization, Antivir Res., 2005, 66, 39-45 CrossrefGoogle Scholar

  • [38] Marks H., Vorst O., van Houwelingen A.M.M.L., van Hulten M.C.W., Vlak J.M., Gene-expression profiling of White spot syndrome virus in vivo, J Gen Virol., 2005, 86, 2081-2100 CrossrefGoogle Scholar

  • [39] Pan D., He N., Yang Z., Liu H., Xu X., Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization, Dev Comp Immunol., 2005, 29, 103-112 CrossrefGoogle Scholar

  • [40] Wang B., Li F., Dong B., Zhang X., Zhang C., Xiang J., Discovery of the genes in response to White spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray, Mar Biotechnol, 2006, 8, 491-500 CrossrefGoogle Scholar

  • [41] Leu J.-H., Chang C.-C., Wu J.-L., Hsu C.-W., Hirono I., Aoki T., et al., Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon, BMC Genomics, 2007, 8, 120 CrossrefGoogle Scholar

  • [42] Robalino J., Almeida J.S., McKillen D., Colglazier J., Trent H.F. III, Chen Y.A., et al., Insights into the immune transcriptome of the shrimp Litopenaeus vannamei: tissue-specific expression profiles and transcriptomic responses to immune challenge, Physiol Genomics., 2007, 29, 44-56 Google Scholar

  • [43] Pongsomboon S., Tang S., Boonda S., Aoki T., Hirono I., Yasuike M., et al., Differentially expressed genes in Penaeus monodon hemocytes following infection with yellow head virus, BMB Rep., 2008, 41, 670-7 CrossrefGoogle Scholar

  • [44] Pongsomboon S., Wongpanya R., Tang S., Chalorsrikul A., Tassanakajon A., Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function, Fish Shellfish Immun., 2008, 25, 485-493 CrossrefGoogle Scholar

  • [45] Wang B., Li F., Luan W., Xie Y., Zhang C., Luo Z., et al., Comparison of gene expression profiles of Fenneropenaeus chinensis challenged with WSSV and vibrio, Mar Biotechnol, 2008, 10, 664-75 CrossrefGoogle Scholar

  • [46] Chai Y.M., Yu S.S., Zhao X.F., Zhu Q., Wang J.X., Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis response to white spot syndrome virus, Fish Shellfish Immunol, 2010, Google Scholar

  • [47] Prapavorarat A., Pongsomboon S., Tassanakajon A., Identification of genes expressed in response to yellow head virus infection in the black tiger shrimp, Penaeus monodon, by suppression subtractive hybridization, Dev Comp Immunol., 2010, 34, 611-7 CrossrefGoogle Scholar

  • [48] Cerenius L., Söderhäll K., The prophenoloxidase-activating system in invertebrates, Immunol Rev., 2004, 198, 116-126 Google Scholar

  • [49] Dodd R.B., Drickamer K., Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity, Glycobiology, 2001, 11, 71R-79 CrossrefGoogle Scholar

  • [50] Zelensky A.N., Gready J.E., The C-type lectin-like domain superfamily, FEBS J, 2005, 272, 6179-6217 Google Scholar

  • [51] Drickamer K., C-type lectin-like domains, Curr Opin Struc Biol., 1999, 9, 585-90 CrossrefGoogle Scholar

  • [52] Luo T., Yang H., Li F., Zhang X., Xu X., Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon, Dev Comp Immunol., 2006, 30, 607-617 CrossrefGoogle Scholar

  • [53] Luo T., Zhang X., Shao Z., Xu X. PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon, FEBS Lett., 2003, 551, 53-57 Google Scholar

  • [54] Ma T.H.-T., Benzie J.A.H., He J.-G., Chan S.-M., PmLT, a C-type lectin specific to hepatopancreas is involved in the innate defense of the shrimp Penaeus monodon, J Invertebr Pathol., 2008, 99, 332-341 Google Scholar

  • [55] Luo T., Li F., Lei K., Xu X., Genomic organization, promoter characterization and expression profiles of an antiviral gene PmAV from the shrimp Penaeus monodon, Mol Immunol., 2007, 44, 1516-1523 CrossrefGoogle Scholar

  • [56] Vetter I.R., Wittinghofer A., The guanine nucleotidebinding switch in three dimensions, Science, 2001, 294, 1299-304 Google Scholar

  • [57] Wennerberg K., Rossman K.L., Der C.J., The Ras superfamily at a glance, J Cell Sci., 2005, 118, 843-846 CrossrefGoogle Scholar

  • [58] Etienne-Manneville S., Hall A., Rho GTPases in cell biology, Nature, 2002, 420, 629-35 Google Scholar

  • [59] Zerial M., McBride H., Rab proteins as membrane organizers, Nat Rev Mol Cell Biol., 2001, 2, 107-117 CrossrefGoogle Scholar

  • [60] Somsel Rodman J., Wandinger-Ness A., Rab GTPases coordinate endocytosis, J Cell Sci., 2000, 113, 183-192 Google Scholar

  • [61] Stenmark H., Olkkonen V.M., The Rab GTPase family, Genome Biol., 2001, 2, 3007 Google Scholar

  • [62] Sritunyalucksana K., Wannapapho W., Lo C.F., Flegel T.W., PmRab7 is a VP28-binding protein involved in White spot syndrome virus infection in shrimp, J Virol., 2006, 80, 10734- 10742 Google Scholar

  • [63] Ongvarrasopone C., Chanasakulniyom M., Sritunyalucksana K., Panyim S., Suppression of PmRab7 by dsRNA Inhibits WSSV or YHV Infection in Shrimp, Mar Biotechnol, 2008, 10, 374-381 CrossrefGoogle Scholar

  • [64] Attasart P., Kaewkhaw R., Chimwai C., Kongphom U., Namramoon O., Panyim S., Inhibition of White spot syndrome virus replication in Penaeus monodon by combined silencing of viral rr2 and shrimp PmRab7, Virus Res., 2009, 145, 127- 133 CrossrefGoogle Scholar

  • [65] Kono T., Sonoda K., Kitao Y., Mekata T., Itami T., Sakai M., The expression analysis of innate immune-related genes in Kuruma shrimp Penaeus japonicus after DNA vaccination against Penaeid rod-shaped DNA virus, Fish Pathol., 2009, 44, 94-97 CrossrefGoogle Scholar

  • [66] Wu W., Zhang X., Characterization of a Rab GTPase upregulated in the shrimp Peneaus japonicus by virus infection, Fish Shellfish Immun., 2007, 23, 438-445 CrossrefGoogle Scholar

  • [67] Wu W., Zong R., Xu J., Zhang X., Antiviral phagocytosis Is regulated by a novel Rab-dependent complex in shrimp Penaeus japonicus, J Proteome Res., 2008, 7, 424-431 CrossrefGoogle Scholar

  • [68] Schmucker D., Clemens J.C., Shu H., Worby C.A., Xiao J., Muda M., et al., Drosophila Dscam Is an Axon Guidance Receptor Exhibiting Extraordinary Molecular Diversity, Cell, 2000, 101, 671-684 CrossrefGoogle Scholar

  • [69] Armitag, S.A., Freiburg R.Y., Kurtz J., Bravo I.G., The evolution of Dscam genes across the arthropods, BMC Evol Biol., 2012, 12, 53 CrossrefGoogle Scholar

  • [70] Watson F.L., Roland P.-H., Thomas F., Lamar D.L., Hughes M., Kondo M., et al., Extensive Diversity of Ig-Superfamily Proteins in the Immune System of Insects, Science, 2005, 309, 1874-1878 Google Scholar

  • [71] Chou P.-H., Chang H.-S., Chen I.T., Lee C.-W., Hung H.- Y., Han-Ching Wang K.C., Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported, Fish Shellfish Immun., 2011, 30, 1109-1123 CrossrefGoogle Scholar

  • [72] Chou P.-H., Chang H.-S., Chen I.T., Lin H.-Y., Chen Y.-M., Yang H.-L., et al., The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail, Developmental Comparative Immunology, 2009, 33, 1258-1267 Google Scholar

  • [73] Brites D., McTaggart S., Morris K., Anderson J., Thomas K., Colson I., et al., The Dscam Homologue of the Crustacean Daphnia Is Diversified by Alternative Splicing Like in Insects, Molecular Biology and Evolution, 2008, 25, 1429-1439 CrossrefGoogle Scholar

  • [74] Naitza S., Ligoxygakis P., Antimicrobial defences in Drosophila: the story so far, Mol Immunol., 2004, 40, 887- 896 CrossrefGoogle Scholar

  • [75] Blandin S., Levashina E.A., Thioester-containing proteins and insect immunity, Mol Immunol., 2004, 40, 903-908 CrossrefGoogle Scholar

  • [76] Boutros M., Agaisse H., Perrimon N., Sequential activation of signaling pathways during innate immune responses in Drosophila, Developmental Cell, 2002, 3, 711-722 CrossrefGoogle Scholar

  • [77] Hetru C., Troxler L., Hoffmann J.A., Drosophila melanogaster antimicrobial defense, Journal of Infectious Diseases, 2003, 187 Suppl 2, S327-34 Google Scholar

  • [78] García J.C., Reyes A., Salazar M., Granja, C.B., Differential gene expression in White Spot Syndrome Virus (WSSV)- infected naïve and previously challenged Pacific white shrimp Penaeus (Litopenaeus) vannamei, Aquaculture, 2009, 289, 253-258 Google Scholar

  • [79] Tassanakajon A., Amparyup P., Somboonwiwat K., Supungul P., Cationic antimicrobial peptides in Penaeid shrimp, Mar Biotechnol, 2011, 13, 639-657 CrossrefGoogle Scholar

  • [80] Chintapitaksakul L., Udomkita A., Smitha D.R., Panyim S., Sonthayanon B., Expression analysis of selected haemocyte transcripts from black tiger shrimp infected with yellow head virus, Science Asia, 2008, 34, 327-333 CrossrefGoogle Scholar

  • [81] de la Vega E., O’Leary N.A., Shockey J.E., Robalino J., Payne C., Browdy C.L., et al., Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection, Mol Immunol., 2008, 45, 1916-1925 CrossrefGoogle Scholar

  • [82] Rowley A.F., Pope E.C., Vaccines and crustacean aquaculture—A mechanistic exploration, Aquaculture, 2012, 334–337, 1-11 Google Scholar

  • [83] Woramongkolchai N., Supungul P., Tassanakajon A., The possible role of penaeidin5 from the black tiger shrimp, Penaeus monodon, in protection against viral infection, Dev Comp Immunol., 2011, 35, 530-536 CrossrefGoogle Scholar

  • [84] Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Letters to Nature, 1998, 391, 806-811 Google Scholar

  • [85] Kemp C., Imler J.-L., Antiviral immunity in drosophila, Curr Opin Immunol., 2009, 21, 3-9 CrossrefGoogle Scholar

  • [86] Tirasophon W., Roshorm Y., Panyim S., Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA, Biochem Bioph Res Co., 2005, 334, 102-107 Google Scholar

  • [87] Ding S.-W., Voinnet O., Antiviral immunity directed by small RNAs, Cell, 2007, 130, 413-426 Google Scholar

  • [88] Galiana-Arnoux D., Dostert C., Schneemann A., Hoffmann J.A., Imler J.L., Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila, Nat Immunol, 2006, 7, 590-7 CrossrefGoogle Scholar

  • [89] Andino R., RNAi puts a lid on virus replication, Nat Biotechnol., 2003, 21, 629-30 CrossrefGoogle Scholar

  • [90] Ding S.-W., Li H., Lu R., Li F., Li W.-X., RNA silencing: a conserved antiviral immunity of plants and animals, Virus Res., 2004, 102, 109-115 CrossrefGoogle Scholar

  • [91] Gitlin L., Andino R., Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing, J Virol., 2003, 77, 7159-65 CrossrefGoogle Scholar

  • [92] Hannon G.J., RNA interference, Nature, 2002, 418, 244-251 Google Scholar

  • [93] Schneider D.S., Jin Y., Morisato D., Anderson K.V., A processed form of the Spatzle protein defines dorsal-ventral polarity in the Drosophila embryo, Development, 1994, 120, 1243-50 Google Scholar

  • [94] Wang X.-H., Aliyari R., Li W.-X., Li H.-W., Kim K., Carthew R., et al., RNA interference directs innate immunity against viruses in adult Drosophila, Science, 2006, 312, 452-454 Google Scholar

  • [95] Robalino J., Bartlett T.C., Chapman R.W., Gross P.S., Browdy C.L., Warr G.W., Double-stranded RNA and antiviral immunity in marine shrimp: Inducible host mechanisms and evidence for the evolution of viral counter-responses, Dev Comp Immunol., 2007, 31, 539-547 CrossrefGoogle Scholar

  • [96] Su J., Oanh D.T.H., Lyons R.E., Leeton L., van Hulten M.C.W., Tan S.-H., et al., A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: Identification and functional characterisation of Dicer-1, Fish Shellfish Immun., 2008, 24, 223-233 CrossrefGoogle Scholar

  • [97] Unajak S., Boonsaeng V., Jitrapakdee S., Isolation and characterization of cDNA encoding Argonaute, a component of RNA silencing in shrimp (Penaeus monodon), Comp Biochem Phys B., 2006, 145, 179-187 Google Scholar

  • [98] Dechklar M., Udomkit A., Panyim S., Characterization of Argonaute cDNA from Penaeus monodon and implication of its role in RNA interference, Biochem Bioph Res Co., 2008, 367, 768-774 Google Scholar

  • [99] Robalino J., Bartlett T., Shepard E., Prior S., Jaramillo G., Scura E., et al., Double-stranded RNA induces sequencespecific antiviral silencing in addition to nonspecific immunity in a marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response?, J Virol., 2005, 79, 13561-71 CrossrefGoogle Scholar

  • [100] Dostert C., Jouanguy E., Irving P., Troxler L., Galiana- Arnoux D., Hetru C., et al., The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila, Nat Immunol., 2005, 6, 946-53 CrossrefGoogle Scholar

  • [101] Agaisse H., Perrimon N., The roles of JAK/STAT signaling in Drosophila immune responses, Immunol Rev., 2004, 198, 72-82 Google Scholar

  • [102] Chen W.Y., Ho K.C., Leu J.H., Liu K.F., Wang H.C., Kou G.H., et al., WSSV infection activates STAT in shrimp, Dev Comp Immunol., 2008, 32, 1142-1150 CrossrefGoogle Scholar

  • [103] Liu W.-J., Chang Y.-S., Wang A.H.-J., Kou G.-H., Lo, C.- F., White Spot Syndrome Virus Annexes a Shrimp STAT To Enhance Expression of the Immediate-Early Gene ie1, J Virol., 2007, 81, 1461-1471 CrossrefGoogle Scholar

  • [104] Sun C., Shao H.-L., Zhang X.-W., Zhao X.-F., Wang, J.- X., Molecular cloning and expression analysis of signal transducer and activator of transcription (STAT) from the Chinese white shrimp Fenneropenaeus chinensis, Mol Biol Rep., 2011, 38, 5313-5319 CrossrefGoogle Scholar

  • [105] Cheng C.-H., Chen G.-D., Yeh M.-S., Chu C.-Y., Hsu Y.- L., Hwang P.-P., et al., Expression and characterization of the JAK kinase and STAT protein from brine shrimp, Artemia franciscana, Fish Shellfish Immun., 2010, 28, 774-782 CrossrefGoogle Scholar

  • [106] Wang W., Zhang X., Comparison of antiviral efficiency of immune responses in shrimp, Fish Shellfish Immun., 2008, 25, 522-527 CrossrefGoogle Scholar

  • [107] Rijiravanich A., Browdy C.L., Withyachumnarnkul, B., Knocking down caspase-3 by RNAi reduces mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei challenged with a low dose of white-spot syndrome virus, Fish Shellfish Immun., 2008, 24, 308-313 CrossrefGoogle Scholar

  • [108] Wu J.L., Muroga K., Apoptosis does not play an important role in the resistance of ‘immune’ Penaeus japonicus against white spot syndrome virus, J Fish Dis., 2004, 27, 15-21 CrossrefGoogle Scholar

  • [109] Loker E.S., Adema C.M., Zhang S.-M., Kepler T.B., Invertebrate immune systems - not homogeneous, not simple, not well understood, Immunol Rev., 2004, 198, 10- 24 Google Scholar

  • [110] Kurtz J., Franz K., Innate defence: Evidence for memory in invertebrate immunity, Nature, 2003, 425, 37-38 Google Scholar

  • [111] Kurtz J., Specific memory within innate immune systems, Trends Immunol., 2005, 26, 186-192 CrossrefGoogle Scholar

  • [112] Schulenburg H., Boehnisch C., Michiels N.K., How do invertebrates generate a highly specific innate immune response?, Mol Immunol., 2007, 44, 3338-3344 CrossrefGoogle Scholar

  • [113] Little T.J., Kraaijeveld A.R., Ecological and evolutionary implications of immunological priming in invertebrates, Trends Ecol Evol., 2004, 19, 58-60 CrossrefGoogle Scholar

  • [114] Sadd B.M., Schmid-Hempel P., Insect immunity shows specificity in protection upon secondary pathogen exposure, Curr Biol., 2006, 16, 1206-1210 CrossrefGoogle Scholar

  • [115] Johnson K.N., van Hulten M.C.W., Barnes A.C., “Vaccination” of shrimp against viral pathogens: Phenomenology and underlying mechanisms, Vaccine, 2008, 26, 4885-4892 CrossrefGoogle Scholar

  • [116] Arala-Chaves M., Sequeira T., Is there any kind of adaptive immunity in invertebrates?, Aquaculture, 2000, 191, 247-258 Google Scholar

  • [117] Kurtz J., Armitage S.A.O., Alternative adaptive immunity in invertebrates, Trends Immunol., 2006, 27, 493-496 CrossrefGoogle Scholar

  • [118] Little T.J., O’Connor B., Colegrave N., Watt K., Read A.F., Maternal transfer of strain-specific immunity in an invertebrate, Curr Biol., 2003, 13, 489-492 CrossrefGoogle Scholar

  • [119] Lemaitre B., Reichhart J.-M.,Hoffmann J.A., Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms, Prod Natl Acad Sci USA., 1997, 94, 14614-14619 CrossrefGoogle Scholar

  • [120] Namikoshi A., Wu J.L., Yamashita T., Nishizawa T., Nishioka T., Arimoto M., et al., Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus, Aquaculture, 2004, 229, 25-35 Google Scholar

  • [121] Rout N., Kumar S., Jaganmohan S., Murugan V., DNA vaccines encoding viral envelope proteins confer protective immunity against WSSV in black tiger shrimp, Vaccine, 2007, 25, 2778-2786 CrossrefGoogle Scholar

  • [122] Witteveldt J., Cifuentes C.C., Vlak J.M., van Hulten M.C.W., Protection of Penaeus monodon against white spot syndrome virus by oral vaccination, J Virol., 2004, 78, 2057-2061 CrossrefGoogle Scholar

  • [123] Witteveldt J., Vlak J.M., van Hulten M.C.W., Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine, Fish Shellfish Immun., 2004, 16, 571-579 CrossrefGoogle Scholar

  • [124] Wu J.L., Nishioka T., Mori K., Nishizawa T., Muroga K., A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus, Fish Shellfish Immun., 2002, 13, 391-403 CrossrefGoogle Scholar

  • [125] Hauton C., Smith V.J., Adaptive immunity in invertebrates: A straw house without a mechanistic foundation, BioEssays, 2007, 29, 1138-1146 CrossrefGoogle Scholar

  • [126] Caipang C.M.A., Verjan N., Ooi E.L., Kondo H., Hirono I., Aoki T., et al., Enhanced survival of shrimp, Penaeus (Marsupenaeus) japonicus from white spot syndrome disease after oral administration of recombinant VP28 expressed in Brevibacillus brevis, Fish Shellfish Immun., 2008, 25, 315- 320 Google Scholar

  • [127] Fu L.-L., Shuai J.-B., Xu Z.-R., Li J.-R., Li W.-F., Immune responses of Fenneropenaeus chinensis against white spot syndrome virus after oral delivery of VP28 using Bacillus subtilis as vehicles, Fish Shellfish Immun., 2010, 28, 49-55 Google Scholar

  • [128] Ha Y.M., Soo-Jung G., Thi-Hoai N., Ra C.H., Kim K.H., Nam Y.K., et al., Vaccination of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV), J Microbiol Biotechnol., 2008, 18, 964-7 Google Scholar

  • [129] Li X., Liu Q.-H., Hou L., Huang J., Effect of VP28 DNA vaccine on white spot syndrome virus in Litopenaeus vannamei, Aquacult Int., 2010, 18, 1035-1044 Google Scholar

  • [130] Mavichak R., Takano T., Kondo H., Hirono I., Wada S., Hatai K., et al., The effect of liposome-coated recombinant protein VP28 against white spot syndrome virus in kuruma shrimp, Marsupenaeus japonicus, J Fish Dis., 2010, 33, 69-74 Google Scholar

  • [131] Rajesh Kumar S., Ishaq Ahamed V.P., Sarathi M., Nazeer Basha A., Sahul Hameed, A.S., Immunological responses of Penaeus monodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV), Fish Shellfish Immun., 2008, 24, 467-478 CrossrefGoogle Scholar

  • [132] Satoh J., Nishizawa T., Yoshimizu M., Protection against white spot syndrome virus (WSSV) infection in kuruma shrimp orally vaccinated with WSSV rVP26 and rVP28, Dis Aquat Organ., 2008, 82, 89-96 CrossrefGoogle Scholar

  • [133] Singh I.S.B., Manjusha M., Pai S.S., Philip R., Fenneropenaeus indicus is protected from white spot disease by oral administration of inactivated white spot syndrome virus, Dis Aquat Organ., 2005, 66, 265-270 CrossrefGoogle Scholar

  • [134] Syed Musthaq S., Madhan S., Sahul Hameed A.S., Kwang J., Localization of VP28 on the baculovirus envelope and its immunogenicity against white spot syndrome virus in Penaeus monodon, Virology, 2009, 391, 315-24 Google Scholar

  • [135] Vaseeharan B., Prem Anand T., Murugan T., Chen J.C., Shrimp vaccination trials with the VP292 protein of white spot syndrome virus, Lett Appl Microbiol., 2006, 43, 137-142 CrossrefGoogle Scholar

  • [136] Sritunyalucksana K., Utairungsee T., Sirikharin R., Srisala J., Virus-binding proteins and their roles in shrimp innate immunity, Fish Shellfish Immun., 2012, 33, 1269-1275 CrossrefGoogle Scholar

  • [137] van Hulten M.C.W., Westenberg M., Goodall S.D., Vlak J.M., Identification of two major virion protein genes of white spot syndromevirus of shrimp, Virology, 2000, 266, 227-236 CrossrefGoogle Scholar

  • [138] van Hulten M.C.W., Witteveldt J., Snippe M., Vlak J.M., White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp, Virology, 2001, 285, 228-233 Google Scholar

  • [139] Alabi A.O., Jones D.A., Latchford J.W., The efficacy of immersion as opposed to oral vaccination of Penaeus indicus larvae against Vibrio harveyi, Aquaculture, 1999, 178, 1-11 Google Scholar

  • [140] Teunissen O.S.P., Faber R., Booms G.H.R., Latscha T., Boon J.H., Influence of vaccination on vibriosis resistance of the giant black tiger shrimp Penaeus monodon (Fabricius), Aquaculture, 1998, 164, 359-366 Google Scholar

  • [141] Haq M.A.B., Vignesh R., Srinivasan M., Deep insight into white spot syndrome virus vaccines: A review, Asian Pacific Journal of Tropical Disease, 2012, 2, 73-77 Google Scholar

  • [142] Underwood D.J., Cowley J.A., Sellars M.J., Barnes A.C., van Hulten M.C.W., Johnson K.N., Gill-associated virus and recombinant protein vaccination in Penaeus monodon, Aquaculture, 2010, 308, 82-88 Google Scholar

  • [143] Du H., Xu Z., Wu X., Li W., Dai W., Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelope protein VP28 expressed using recombinant baculovirus, Aquaculture, 2006, 260, 39-43 Google Scholar

  • [144] Flegel T.W., Update on viral accommodation, a model for host-viral interaction in shrimp and other arthropods, Dev Comp Immunol., 2007, 31, 217-231 CrossrefGoogle Scholar

  • [145] Tang K.F.J., Durand S.V., White B.L., Redman R.M., Mohney L.L., Lightner D.V., Induced resistance to white spot syndrome virus infection in Penaeus stylirostris through pre-infection with infectious hypodermal and hematopoietic necrosis virus—a preliminary study, Aquaculture, 2003, 216, 19-29 Google Scholar

  • [146] Melena J., Bayot B., Betancourt I., Amano Y., Panchana F., Alday V., et al., Pre-exposure to infectious hypodermal and haematopoietic necrosis virus or to inactivated white spot syndrome virus (WSSV) confers protection against WSSV in Penaeus vannamei (Boone) post-larvae, J Fish Dis., 2006, 29, 589-600 CrossrefGoogle Scholar

  • [147] Fu L.-L., Wang Y., Wu Z.-C., Li W.-F., In vivo assessment for oral delivery of Bacillus subtilis harboring a viral protein (VP28) against white spot syndrome virus in Litopenaeus vannamei, Aquaculture, 2011, 322–323, 33-38 Google Scholar

  • [148] Lightner D.V., A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp, Baton Rouge, LA, 1996 Google Scholar

  • [149] Cowley J.A., Dimmock C.M., Spann K.M., Walker P.J., Detection of Australian gill-associated virus (GAV) and lymphoid organ virus (LOV) of Penaeus monodon by RTnested PCR, Dis Aquat Organ., 2000, 39, 159-167 CrossrefGoogle Scholar

  • [150] Spann K.M., Donaldson A.R., Cowley J.A., Walker P.J., Differences in the susceptibility of some penaeid prawn species to gill-associated virus (GAV) infection, Dis Aquat Organ., 2000, 42, 221-225 CrossrefGoogle Scholar

  • [151] Jiang G., Yu R., Zhou M., Modulatory effects of ammonia-N on the immune system of Penaeus japonicus to virulence of white spot syndrome virus, Aquaculture, 2004, 241, 61-75 Google Scholar

  • [152] Lu-Qing P., Bo F., Ling-Xu J., Jing L., The Effect of Temperature on Selected Immune Parameters of the White Shrimp, Litopenaeus vannamei, J World Aquacult Soc., 2007, 38, 326-332 Google Scholar

  • [153] de la Vega E., Hall M.R., Degnan B.M., Wilson K.J., Shortterm hyperthermic treatment of Penaeus monodon increases expression of heat shock protein 70 (HSP70) and reduces replication of gill-associated virus (GAV), Aquaculture, 2006, 253, 82-90 Google Scholar

  • [154] Wang F.-I., Chen J.-C., The immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp. damselae under temperature stress, Aquaculture, 2006, 258, 34-41 Google Scholar

  • [155] de la Vega E., Degnan B.M., Hall M.R., Cowley J.A., Wilson K.J., Quantitative real-time RT-PCR demonstrates that handling stress can lead to rapid increases of gill-associated virus (GAV) infection levels in Penaeus monodon, Dis Aquat Organ., 2004, 59, 195-203 CrossrefGoogle Scholar

  • [156] Immanuel G., Citarasu T., Sivaram V., Michael Babu M., Palavesam A., Delivery of HUFA, probionts and biomedicine through bioencapsulated Artemia as a means to enhance the growth and survival and reduce the pathogenesity in shrimp Penaeus monodon postlarvae, Aquacult Int., 2007, 15, 137-152 CrossrefGoogle Scholar

About the article

Received: 2012-12-22

Accepted: 2013-05-17

Published Online: 2013-07-15

Citation Information: Invertebrate Immunity, Volume 1, Pages 2–14, ISSN (Online) 2084-767X, DOI: https://doi.org/10.2478/invim-2013-0001.

Export Citation

©2013 Versita Sp. z o.o.. This content is open access.

Comments (0)

Please log in or register to comment.
Log in