Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Information Technologies and Control

The Journal of Institute of Information and Communication Technologies of Bulgarian Academy of Sciences

4 Issues per year

Open Access
See all formats and pricing
More options …

Performance Analysis of Robust Image Features Detection Algorithms

I. Nikolova
Published Online: 2014-12-30 | DOI: https://doi.org/10.2478/itc-2013-0011


This paper deals with the challenging task of acquiring stable image features in a sequence of images of the same scene taken under different viewing positions by a digital still camera. Two popular contemporary algorithms for discrete feature detection: SIFT and SURF are regarded. The results of the timing performance analysis of their sequential implementations are presented and discussed. The performance speedup analysis and scalability tests with multi-threading and GPU-based implementations are analyzed

Keywords: Image processing; image features detection and description; general-purpose parallel computer platform; performance and speedup analysis


  • 1. Bay, H., T. Tuytelaars & L. Van Gool. Surf: Speeded up Robust Features. Computer Vision-ECCV 2006, Springer Berlin Heidelberg, 2006, 404-417.Google Scholar

  • 2. Chapman, B., G. Jost & R. Van Der Pas. Using OpenMP: Portable Shared Memory Parallel Programming. - MIT Press, 10, 2008.Google Scholar

  • 3. Drepper, U. & I. Molnar. The Native POSIX Thread Library for Linux. White Paper, Red Hat Inc, 2003.Google Scholar

  • 4. Evans, C. Notes on the OpenSurf Library. University of Bristol, Tech. Rep. CSTR-09-001, January 2009.Google Scholar

  • 5. Glaskowsky, P. N. NVIDIA’s Fermi: the First Complete GPU Computing Architecture. White Paper, 2009.Google Scholar

  • 6. FAMILY, IBM PowerPC Microprocessor.Vector/SIMD Multimedia Extension Technology Programming Environments Manual, 2005.Google Scholar

  • 7. Fenlason, J. & R. Stallman. GNU gprof: the GNU Profiler. Manual, Free Software Foundation Inc, 1997.Google Scholar

  • 8. Hartley, R. & A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2003.Google Scholar

  • 9. Hennessy, J. L. & D. A. Patterson. Computer Architecture: A Quantitative Approach. Elsevier, 2012.Google Scholar

  • 10. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2009.Google Scholar

  • 11. Lowe, D. G. Distinctive Image Features From Scale-Invariant Key Points. - International Journal of Computer Vision, 60 (2), 2004, 91-110.Google Scholar

  • 12. Schulz, A., F. Jung, S. Hartte, D. Trick, C. Wojek, K. Schindler & M. Goesele. CUDA SURF - a Real-time Implementation for SURF, 2010.Google Scholar

  • 13. Spivey, J. M. Fast, Accurate Call Graph Profiling. Software: Practice and Experience, 34 (3), 2004, 249-264.Google Scholar

  • 14. Szeliski, R. Computer Vision: Algorithms and Applications. Springer, 2010.Google Scholar

  • 15. Tuytelaars, T. & K. Mikolajczyk. Local Invariant Feature Detectors: A Survey. - Foundations and Trends® in Computer Graphics and Vision, 3 (3), 2008, 177-280.Google Scholar

  • 16. Vedaldi, A. Sift++ Source Code and Documentation [online], 2009. www.robots.ox.ac.uk/~vedaldi/code/siftpp.html.Google Scholar

  • 17. Viola, P. & M. J. Jones. Robust Real-time Face Detection. - International Journal of Computer Vision, 57 (2), 2004, 137-154.Google Scholar

  • 18. Zhang, N. Computing Parallel Speeded-up Robust Features (P-SURF) via POSIX Threads. Emerging Intelligent Computing Technology and Applications, Springer Berlin Heidelberg, 2009, 287-296Google Scholar

About the article

Received: 2014-07-14

Published Online: 2014-12-30

Published in Print: 2014-09-01

Citation Information: Information Technologies and Control, Volume 11, Issue 3, Pages 2–15, ISSN (Online) 1312-2622, DOI: https://doi.org/10.2478/itc-2013-0011.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in