Jump to ContentJump to Main Navigation
Show Summary Details
More options …

it - Information Technology

Methods and Applications of Informatics and Information Technology

Editor-in-Chief: Conrad, Stefan / Molitor, Paul

6 Issues per year

See all formats and pricing
More options …
Volume 60, Issue 4


An intelligent decision support system for readmission prediction in healthcare

Isabella Eigner
  • Corresponding author
  • Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of Information Systems, D-90403 Nürnberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Freimut Bodendorf
Published Online: 2018-07-28 | DOI: https://doi.org/10.1515/itit-2018-0003


Readmission prediction in hospitals is a highly complex task involving multiple risk factors that can vary among different disease groups. We address this issue by implementing multiple cross-validated classification models within an intelligent CDSS to enhance patient discharge management. Depending on the diagnosis, the system selects and applies the appropriate model and visualises the prediction results. In addition, the cost and reimbursement development for each episode are determined. The architecture of the CDSS and the integration of the prediction models are presented in this paper.

Keywords: Decision support; IDSS; CDSS; readmissions; risk prediction; machine learning

ACM CCS: Information systemsInformation systems applicationsDecision support systemsData analytics


  • 1.

    M. W. M. Jaspers, M. Smeulers, H. Vermeulen, and L. W. Peute, “Effects of clinical decision-support systems on practitioner performance and patient outcomes: A synthesis of high-quality systematic review findings,” Journal of the American Medical Informatics Association: JAMIA, vol. 18, no. 3, pp. 327–334, 2011.CrossrefWeb of ScienceGoogle Scholar

  • 2.

    E. Steeman, P. Moons, K. Milisen, N. de Bal, S. de Geest, C. de Froidmont, V. Tellier, C. Gosset, and I. Abraham, “Implementation of discharge management for geriatric patients at risk of readmission or institutionalization,” International Journal for Quality in Health Care, vol. 18, no. 5, pp. 352–358, 2006.CrossrefGoogle Scholar

  • 3.

    M. Naylor, “Comprehensive discharge planning for the hospitalized elderly,” Annals of Internal Medicine, vol. 120, no. 12, p. 999, 1994.CrossrefGoogle Scholar

  • 4.

    K. H. Bowles, A. Hanlon, D. Holland, S. L. Potashnik, and M. Topaz, “Impact of discharge planning decision support on time to readmission among older adult medical patients,” Professional case management, vol. 19, no. 1, pp. 29–38, 2014.CrossrefGoogle Scholar

  • 5.

    G. Phillips-Wren, M. Mora, G. A. Forgionne, and J. Gupta, “An integrative evaluation framework for intelligent decision support systems,” European Journal of Operational Research, vol. 195, no. 3, pp. 642–652, 2009.CrossrefWeb of ScienceGoogle Scholar

  • 6.

    H. Zhou, P. R. Della, P. Roberts, L. Goh, and S. S. Dhaliwal, “Utility of models to predict 28-day or 30-day unplanned hospital readmissions: An updated systematic review,” BMJ open, vol. 6, no. 6, p. e011060, 2016.Web of ScienceCrossrefGoogle Scholar

  • 7.

    D. Kansagara, H. Englander, A. Salanitro, D. Kagen, C. Theobald, M. Freeman, and S. Kripalani, “Risk prediction models for hospital readmission: A systematic review,” JAMA, vol. 306, no. 15, pp. 1688–1698, 2011.CrossrefWeb of ScienceGoogle Scholar

  • 8.

    AIHW, “National healthcare agreement: Pi 23–unplanned hospital readmission rates, 2017,” 2017.

  • 9.

    M. Mora, G. Forgionne, F. Cervantes, L. Garrido, J. N. Gupta, and O. Gelman, “Toward a comprehensive framework for the design and evaluation of intelligent decision-making support systems (i-dmss),” Journal of Decision Systems, vol. 14, no. 3, pp. 321–344, 2012.Google Scholar

  • 10.

    R. H. Sprague, “A framework for the development of decision support systems,” MIS Quarterly, vol. 4, no. 4, p. 1, 1980.Google Scholar

  • 11.

    R. Grol and J. Grimshaw, “From best evidence to best practice: Effective implementation of change in patients’ care,” The Lancet, vol. 362, no. 9391, pp. 1225–1230, 2003.CrossrefGoogle Scholar

  • 12.

    J. A. Osheroff, Improving outcomes with clinical decision support: An implementer’s guide. Chicago IL: HIMSS, 2nd ed. ed., 2012.Google Scholar

  • 13.

    P. E. Beeler, D. W. Bates, and B. L. Hug, “Clinical decision support systems,” Swiss medical weekly, vol. 144, p. w14073, 2014.Web of ScienceGoogle Scholar

  • 14.

    E. S. Berner, “Clinical decision support systems: State of the art,” AHRQ publication, vol. 90069,  2009.Google Scholar

  • 15.

    N. Pombo, P. Araujo, and J. Viana, “Applied computer technologies in clinical decision support systems for pain management: A systematic review,” Journal of Intelligent & Fuzzy Systems, vol. 26, no. 5, pp. 2411–2425, 2014.Web of ScienceGoogle Scholar

  • 16.

    T. A. Pryor, “Development of decision support systems,” International journal of clinical monitoring and computing, vol. 7, no. 3, pp. 137–146, 1990.CrossrefGoogle Scholar

  • 17.

    A. Wright, D. F. Sittig, J. S. Ash, J. Feblowitz, S. Meltzer, C. McMullen, K. Guappone, J. Carpenter, J. Richardson, L. Simonaitis, R. S. Evans, W. P. Nichol, and B. Middleton, “Development and evaluation of a comprehensive clinical decision support taxonomy: Comparison of front-end tools in commercial and internally developed electronic health record systems,” Journal of the American Medical Informatics Association: JAMIA, vol. 18, no. 3, pp. 232–242, 2011.CrossrefWeb of ScienceGoogle Scholar

  • 18.

    K. Kawamoto, C. A. Houlihan, E. A. Balas, and D. F. Lobach, “Improving clinical practice using clinical decision support systems: A systematic review of trials to identify features critical to success,” BMJ, vol. 330, no. 7494, p. 765, 2005.CrossrefGoogle Scholar

  • 19.

    R. N. Shiffman, Y. Liaw, C. A. Brandt, and G. J. Corb, “Computer-based guideline implementation systems: A systematic review of functionality and effectiveness,” Journal of the American Medical Informatics Association: JAMIA, vol. 6, no. 2, pp. 104–114, 1999.CrossrefGoogle Scholar

  • 20.

    J. L. Y. Liu, J. C. Wyatt, J. J. Deeks, S. Clamp, J. Keen, P. Verde, C. Ohmann, J. Wellwood, M. Dawes, and D. G. Altman, “Systematic reviews of clinical decision tools for acute abdominal pain,” Health technology assessment (Winchester, England), vol. 10, no. 47, pp. 1–167, iii–iv, 2006.Google Scholar

  • 21.

    A. X. Garg, N. K. J. Adhikari, H. McDonald, M. P. Rosas-Arellano, P. J. Devereaux, J. Beyene, J. Sam, and R. B. Haynes, “Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review,” JAMA, vol. 293, no. 10, pp. 1223–1238, 2005.CrossrefGoogle Scholar

  • 22.

    D. W. Bates and A. A. Gawande, “Improving safety with information technology,” The New England journal of medicine, vol. 348, no. 25, pp. 2526–2534, 2003.CrossrefGoogle Scholar

  • 23.

    P. E. Beeler, E. Eschmann, C. Rosen, and J. Blaser, “Use of an on-demand drug-drug interaction checker by prescribers and consultants: A retrospective analysis in a swiss teaching hospital,” Drug safety, vol. 36, no. 6, pp. 427–434, 2013.CrossrefWeb of ScienceGoogle Scholar

  • 24.

    I. Eigner, A. Hamper, N. Wickramasinghe, and F. Bodendorf, “Decision makers and criteria for patient discharge-a qualitative study,” 2017.

  • 25.

    IHPA, “National hospital cost data collection, public hospitals cost report,” 2017.

  • 26.

    R. B. Fetter, Y. Shin, J. L. Freeman, R. F. Averill, and J. D. Thompson, “Case mix definition by diagnosis-related groups,” Medical care, vol. 18, no. 2 Suppl, pp. iii, 1–53, 1980.Google Scholar

  • 27.

    AIHW, “Admitted patient care 2015–16: Australian hospital statistics,” 2017.

  • 28.

    Department of Health and Human Services, Department of Health and Human Services policy and funding guidelines 2016. 2016.

  • 29.

    J. Donzé, D. Aujesky, D. Williams, and J. L. Schnipper, “Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model,” JAMA internal medicine, vol. 173, no. 8, pp. 632–638, 2013.Web of ScienceCrossrefGoogle Scholar

  • 30.

    S. Jablonski, I. Petrov, C. Meiler, and U. Mayer, Guide to Web Application and Platform Architectures. Berlin and Heidelberg: Springer, 2004.Google Scholar

  • 31.

    R. Steiner, Grundkurs Relationale Datenbanken: Eine grundlegende Einführung in die Praxis der Datenbankentwicklung für Ausbildung, Studium und Beruf. IT erfolgreich lernen, Wiesbaden: Friedr.Vieweg & Sohn Verlag | GWV Fachverlage GmbH Wiesbaden, 6., überarbeitete und erweiterte auflage ed., 2006.Google Scholar

  • 32.

    Microsoft, “Implementing the mvvm pattern using the prism library 5.0 for wpf,” 2017.

  • 33.

    M. Hofmann and R. Klinkenberg, Rapidminer: Data mining use cases and business analytics applications. [Place of publication not identified]: Chapman & Hall Crc, 2017.Google Scholar

  • 34.

    E. S. Berner, Clinical decision support systems: Theory and practice. Health informatics, New York: Springer, 2nd ed. ed., 2007.Google Scholar

About the article

Isabella Eigner

Isabella Eigner is a research assistant and PhD student at the Chair of Information Systems (Services – Processes – Intelligence) at the FAU Erlangen-Nuremberg in Nuremberg, Germany. Her research focuses on machine learning and risk prediction in healthcare.

Freimut Bodendorf

Freimut Bodendorf is a Professor of Information Systems and Head of the Institute of Information Systems at the FAU Erlangen-Nuremberg in Nuremberg, Germany.

Received: 2017-12-31

Revised: 2018-05-23

Accepted: 2018-05-24

Published Online: 2018-07-28

Published in Print: 2018-08-28

Citation Information: it - Information Technology, Volume 60, Issue 4, Pages 195–205, ISSN (Online) 2196-7032, ISSN (Print) 1611-2776, DOI: https://doi.org/10.1515/itit-2018-0003.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in