Jump to ContentJump to Main Navigation
Show Summary Details
More options …

it - Information Technology

Methods and Applications of Informatics and Information Technology

Editor-in-Chief: Conrad, Stefan

Online
ISSN
2196-7032
See all formats and pricing
More options …
Volume 61, Issue 5-6

Issues

Your data is gold – Data donation for better healthcare?

Veronika StrotbaumORCID iD: https://orcid.org/0000-0003-1098-9417 / Monika PobiruchinORCID iD: https://orcid.org/0000-0002-9925-2173 / Björn SchreiweisORCID iD: https://orcid.org/0000-0002-1748-1563 / Martin WiesnerORCID iD: https://orcid.org/0000-0003-3346-9633 / Brigitte StrahwaldORCID iD: https://orcid.org/0000-0002-5069-6857
Published Online: 2019-11-26 | DOI: https://doi.org/10.1515/itit-2019-0024

Abstract

Today, medical data such as diagnoses, procedures, imaging reports and laboratory tests, are not only collected in context of primary research and clinical studies. In addition, citizens are tracking their daily steps, food intake, sport exercises, and disease symptoms via mobile phones and wearable devices. In this context, the topic of “data donation” is drawing increased attention in science, politics, ethics and practice. This paper provides insights into the status quo of personal data donation in Germany and from a global perspective. As this topic requires a consideration of several perspectives, potential benefits and related, multifaceted challenges for citizens, patients and researchers are discussed. This includes aspects such as data quality & accessibility, privacy and ethical considerations.

Keywords: Data Donation; Medical Data Sharing; Patient Generated Health Data

ACM CCS: Applied computingLife and medical sciences

Literature

  • 1.

    WHO. 2010. World Health Assembly Resolution 63.22 on Human Organ and Tissue Transplantation [Online: http://www.who.int/transplantation/en; Accessed: June 28, 2019].Google Scholar

  • 2.

    David M. Shaw, Juliane V. Gross, and Thomas C. Erren. 2016. Data donation after death. EMBO reports, 17, 1, 14–17. DOI:.CrossrefGoogle Scholar

  • 3.

    Weiqi Wang and Eswar Krishnan. 2014. Big Data and Clinicians: A Review on the State of the Science. JMIR Med Inform, 2, 1, e1. DOI:.CrossrefGoogle Scholar

  • 4.

    Ziad Obermeyer and Ezekiel J. Emanuel. 2016. Predicting the Future – Big Data, Machine Learning, and Clinical Medicine. N Engl J Med, 375, 13, 1216–1219. DOI:.CrossrefGoogle Scholar

  • 5.

    Jenny Krutzinna, Mariarosaria Taddeo, and Luciano Floridi. 2019. Enabling posthumous medical data donation: a plea for the ethical utilisation of personal health data. In The Ethics of Medical Data Donation. Springer, 163–180.Google Scholar

  • 6.

    Sean Khozin, Gideon M. Blumenthal, and Richard Pazdur. 2017. Real-world Data for Clinical Evidence Generation in Oncology. JNCI, 109, 11. DOI:.CrossrefGoogle Scholar

  • 7.

    Christopher J. L. Murray, et al. 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390, 10100, 1151–1210. DOI:.CrossrefGoogle Scholar

  • 8.

    Siegfried Geyer and Christoph Kowalski. 2018. GKV-Routinedaten in der onkologischen Versorgungsforschung. ONKOLOGIE heute, 1/2018, X70–X72.Google Scholar

  • 9.

    Kristiina Häyrinen, Kaija Saranto, and Pirkko Nykänen. 2008. Definition, structure, content, use and impacts of electronic health records: A review of the research literature. Int J Med Inform, 77, 5, 291–304. DOI:.CrossrefGoogle Scholar

  • 10.

    Monika Pobiruchin and Martin Wiesner. 2017. Workshop Report, conhIT Satellite Symposium 2017: Können von Bürgern generierte Daten für die Versorgungsforschung nutzbar gemacht werden? Technical report [Online: https://gmds.de/fileadmin/user_upload/Presse/170424_PGCHI_Workshop_Summary.pdf; Accessed: May 9, 2019].Google Scholar

  • 11.

    David D. McManus, Ludovic Trinquart, Emelia J. Benjamin, Emily S. Manders, Kelsey Fusco, et al. 2019. Design and preliminary findings from a new electronic cohort embedded in the framingham heart study. J Med Internet Res, 21, 3 (March 2019), e12143. DOI:.CrossrefGoogle Scholar

  • 12.

    Melanie Swan. 2012. Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. J Sens Actuator Netw, 1, 3, 217–253. DOI:.CrossrefGoogle Scholar

  • 13.

    Andre Henriksen, Martin Mikalsen, Woldaregay Haugen, Ashenafi Zebene, et al. 2018. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J Med Internet Res, 20, 3, e110. DOI:.CrossrefGoogle Scholar

  • 14.

    Pascal Su. 2013. Direct-to-consumer genetic testing: a comprehensive view. Yale J Biol Med, 86, 3, 359.Google Scholar

  • 15.

    Population Health Research Network. 2019. About us [Online: https://www.phrn.org.au/about-us; Accessed: June 12, 2019].Google Scholar

  • 16.

    Christian Nohr, Liisa Parv, Pille Kink, Elizabeth Cummings, Helen Almond, Jens Rahbek Nørgaard, et al. 2017. Nationwide citizen access to their healthdata: analysing and comparing experiences in Denmark, Estonia and Australia. BMC Health Serv Res, 17, 534. DOI:.CrossrefGoogle Scholar

  • 17.

    Australian Government – Australian Digital Health Agency. 2018. What is My Health Record? Whats in a My Health Record? [Online: https://www.myhealthrecord.gov.au/for-you-your-family/what-is-my-health-record; Accessed: June 12, 2019].Google Scholar

  • 18.

    Sundhed. 2016. Sundhed.dk – background [Online: https://www.sundhed.dk/borger/service/om-sundheddk/ehealth-in-denmark/background; Accessed: June 13, 2019].Google Scholar

  • 19.

    Matthias Hannermann. 2014. Der Vorratsdatenspeicher [Online: https://www.brandeins.de/magazine/brand-eins-wirtschaftsmagazin/2014/beobachten/der-vorratsdatenspeicher; Accessed: June 13, 2019].Google Scholar

  • 20.

    Charles Seife. 2013. 23andMe Is Terrifying, but Not for the Reasons the FDA Thinks [Online: https://www.scientificamerican.com/article/23andme-is-terrifying-but-not-for-the-reasons-the-fda-thinks; Accessed: June 10, 2019].Google Scholar

  • 21.

    Henri-Corto Stoekle, Marie Fance Mamzer-Bruneel, Guillaume Vogt, and Christian Herve. 2016. 23andMe: a new two-sided data-bankingmarket model. BMC Medical Ethics, 17, 19. DOI:.CrossrefGoogle Scholar

  • 22.

    Wolfgang Hoffmann, Karl-Heinz Jöckel, Rudolf Kaaks, H.-Erich Wichmann, Karin Halina Greiser, and Jakob Linseisen. 2011. The National Cohort. A prospective epidemiologic study resource for health and disease research in Germany. Technical report [Online: https://nako.de/wp-content/uploads/2015/07/Wissenschaftliches-Konzept-der-NAKO2.pdf; Accessed: June 18, 2019].Google Scholar

  • 23.

    Wolfgang Ahrens and Karl-Heinz Jöckel. 2015. Der Nutzen großer Kohortenstudien für die Gesundheitsforschung am Beispiel der Nationalen Kohorte. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz, 58, 8, 813–821. DOI:.CrossrefGoogle Scholar

  • 24.

    Hans-Konrad Selbmann. 1988. Epidemiologische Forschung in der Bundesrepublik Deutschland – Aufgaben und Grenzen. In Medizinische Informationsverarbeitung und Epidemiologie im Dienste der Gesundheit. Selbmann Hans-Konrad, et al., editors. Springer, Berlin, Heidelberg. DOI:.CrossrefGoogle Scholar

  • 25.

    Andreas Maier. 2019. Medical Data Donors e.V. – Mission [Online: https://www.medicaldatadonors.org/index.php/mission; Accessed: June 11, 2019].Google Scholar

  • 26.

    George Hripcsak, Meryl Bloomrosen, Patti F. Brennan, Christopher G. Chute, Jim Cimino, et al. 2014. Health data use, stewardship, and governance: ongoing gaps and challenges: a report from AMIA’s 2012 Health Policy Meeting. J Am Med Inform Assoc, 21, 2, 204–211. DOI:.CrossrefGoogle Scholar

  • 27.

    Marc Cuggia and Stéphanie Combes. 2019. The French Health Data Hub and the German Medical Informatics Initiatives: Two National Projects to Promote Data Sharing in Healthcare. Yearb Med Inform, 28, 1, 195–202. DOI:.CrossrefGoogle Scholar

  • 28.

    Expertengruppe Smart Data im Gesundheitswesen. 2017. Smart Data im Gesundheitswesen 2017: Smart Data im Gesundheitswesen – Positionspapier der Expertengruppe Smart Data. Technical Report [Online: https://deutschland-intelligent-vernetzt.org/app/uploads/2017/07/20170612_DIV-Position-Smart-Data-im-Gesundheitswesen.pdf; Accessed: June 11, 2019]. Bundesministerium für Gesundheit, Berlin.Google Scholar

  • 29.

    Nature Editorial. 2015. Data overprotection – Draft European rules governing privacy threaten to hamper medical research. Nature, 522, 7557, 391–392. DOI:.CrossrefGoogle Scholar

  • 30.

    German Ethics Council. 2017. Big Data and Health – Data Sovereignty as the Shaping of Informational Freedom. ISBN: 978-3-941957-75-6. Berlin.Google Scholar

  • 31.

    Thorsten Maybaum. 2019. Spahn appelliert an Bevölkerung, Gesundheitsdaten für Forschung freizugeben [Online: https://www.aerzteblatt.de/nachrichten/102368; Accessed: June 28, 2019].Google Scholar

  • 32.

    Kathrin Gießelmann. 2018. Hecken plädiert für verpflichtende Datenspende [Online: https://www.aerzteblatt.de/nachrichten/99900; Accessed: June 11, 2019].Google Scholar

  • 33.

    Philipp Grätzel von Grätz. 2019. Mehr Mut [Online: https://e-health-com.de/thema-der-woche/mehr-mut; Accessed: June 11, 2019].Google Scholar

  • 34.

    Urs-Vito Albrecht, Ute von Jan, Oliver Pramann, and Heiner Fangerau. 2016. Kapitel 7 – Gesundheits-Apps im Forschungskontext. Chancen und Risiken von Gesundheits-Apps (CHARISMHA). Urs-Vito Albrecht, editor.Google Scholar

  • 35.

    Johannes Hauswaldt, Valérie Kempter, Wolfgang Himmel, and Eva Hummers. 2018. Obstacles in secondary analysis of routine data from primary care. Gesundheitswesen, 80, 11, 987–993. DOI:.CrossrefGoogle Scholar

  • 36.

    Antoine Vallot, Antoine d’Aquin, Joseph Adrien Le Roi, and Guy Crescent Fagon. 1862. Journal de la santé du roi Louis XIV de l’année 1647 à l’année 1711. Durand.

  • 37.

    Statista Survey. (n.d.) 2017. Percentage of mobile medical application categories used by U.S. adults at least once as of 2017 [Online: https://www.statista.com/statistics/378850; Accessed: June 21, 2019].Google Scholar

  • 38.

    Hannah E. Payne, Cameron Lister, Joshua H. West, and Jay M. Bernhardt. 2015. Behavioral Functionality of Mobile Apps in Health Interventions: A Systematic Review of the Literature. JMIR mHealth uHealth, 3, 1, e20. DOI:.CrossrefGoogle Scholar

  • 39.

    Jennifer K. Carroll, Anne Moorhead, Raymond Bond, William G. LeBlanc, Robert J. Petrella, and Kevin Fiscella. 2017. Who Uses Mobile Phone Health Apps and Does Use Matter? A Secondary Data Analytics Approach. J Med Internet Res, 19, 4, e125. DOI:.CrossrefGoogle Scholar

  • 40.

    Walter Thompson. 2017. Worldwide survey of fitness trends for 2018: the crep edition. ACSMs Health Fit J, 21, 6, 10–19. DOI:.CrossrefGoogle Scholar

  • 41.

    Valerie Gay, and Peter Leijdekkers. 2015. Bringing Health and Fitness Data Together for Connected Health Care: Mobile Apps as Enablers of Interoperability. J Med Internet Res, 17, 11, e260. DOI:.CrossrefGoogle Scholar

  • 42.

    Martin Wiesner, Richard Zowalla, Julian Suleder, Maximilian Westers, and Monika Pobiruchin. 2018. Technology Adoption, Motivational Aspects, and Privacy Concerns of Wearables in the German Running Community: Field Study. JMIR mHealth uHealth, 6, 12, e201. DOI:.CrossrefGoogle Scholar

  • 43.

    Pei-Yun Hsueh, Ying K. Cheung, Sanjoy. Dey, Katherine K. Kim, Fernando Martin-Sanchez, S. K. Petersen, and Thomas Wetter. 2017. Added Value from Secondary Use of Person Generated Health Data in Consumer Health Informatics. Yearb Med Inform, 26, 01, 160–171. DOI:.CrossrefGoogle Scholar

  • 44.

    Albert M. Lai, Pei-Yun Hsueh, Y. K. Choi, and Robin R. Austin. 2017. Present and future trends in consumer health informatics and patient-generated health data. Yearb Med Inform, 26, 01, 152–159. DOI:.CrossrefGoogle Scholar

  • 45.

    Ethan Basch, Allison M. Deal, Mark G. Kris, Howard I. Scher, Clifford A. Hudis, et al. 2016. Symptom monitoring with patient-reported outcomes during routine cancer treatment: a randomized controlled trial. J of Clin Oncol, 34, 6, 557. DOI:.CrossrefGoogle Scholar

  • 46.

    Deborah Lupton. 2014. The commodification of patient opinion: the digital patient experience economy in the age of big data. Sociology of health & illness, 36, 6, 856–869. DOI:.CrossrefGoogle Scholar

  • 47.

    Melanie Swan. 2009. Emerging Patient-Driven Health Care Models: An Examination of Health Social Networks, Consumer Personalized Medicine and Quantified Self-Tracking. Int. J. Environ. Res. Public Health, 6, 2, 492–525. DOI:.CrossrefGoogle Scholar

  • 48.

    Christopher Burton, David Weller, and Michael Sharpe. 2007. Are electronic diaries useful for symptoms research? A systematic review. J Psychosom Res, 62, 5, 553–561. DOI:.CrossrefGoogle Scholar

  • 49.

    Martha M. Funnell and Robert M. Anderson. 2004. Empowerment and self-management of diabetes. Clinical diabetes, 22, 3, 123–127. DOI:.CrossrefGoogle Scholar

  • 50.

    Catherine A. Martin and Barry P. McGrath. 2014. White-coat hypertension. Clin Exp Pharmacol Physiol, 41, 1, 22–29. DOI:.CrossrefGoogle Scholar

  • 51.

    Daniel Rosen, Janice D. McCall, and Brian A. Primack. 2017. Telehealth protocol to prevent readmission among high-risk patients with congestive heart failure. The American J of Med, 130, 11, 1326–1330. DOI:.CrossrefGoogle Scholar

  • 52.

    Rachel R. Bian, Gretchen A. Piatt, Ananda Sen, Melissa A. Plegue, Mariana L. De Michele, et al. 2017. The effect of technology-mediated diabetes prevention interventions on weight: a meta-analysis. J Med Internet Res, 19, 3, e76. DOI:.CrossrefGoogle Scholar

  • 53.

    Amy L. McKenzie, Sarah J. Hallberg, Brent C. Creighton, Brittanie M. Volk, Theresa M. Link, et al. 2017. A novel intervention including individualized nutritional recommendations reduces hemoglobin a1c level, medication use, and weight in type 2 diabetes. JMIR Diabetes, 2, 1, e5. DOI:.CrossrefGoogle Scholar

  • 54.

    Ingrid Köster, Eduard Huppertz, Hans Hauner, and Ingrid Schubert. 2014. Costs of Diabetes Mellitus (CoDiM) in Germany, direct per-capita costs of managing hyperglycaemia and diabetes complications in 2010 compared to 2001. Exp Clin Endocrinol Diabetes, 122, 09, 510–516. DOI:.CrossrefGoogle Scholar

  • 55.

    Laura F. Garabedian, Dennis Ross-Degnan, and J. Frank Wharam. 2015. Mobile Phone and Smartphone Technologies for Diabetes Care and Self-Management. Curr Diab Rep, 15, 12, 109. DOI:.CrossrefGoogle Scholar

  • 56.

    William A. Wood, Antonia V. Bennett, and Ethan Basch. 2015. Emerging uses of patient generated health data in clinical research. Molecular Oncology, 9, 5, 1018–1024. DOI:.CrossrefGoogle Scholar

  • 57.

    Dana Lewis, and #OpenAPS Community. 2019. OpenAPS Outcomes [Online: https://openaps.org/outcomes/; Accessed: June 21, 2019].Google Scholar

  • 58.

    Dana Lewis, Scott Leibrand, and #OpenAPS Community. 2016. Real-world use of open source artificial pancreas systems. J of Diabetes Sci and Tech, 10, 6, 1411–1411. DOI:.CrossrefGoogle Scholar

  • 59.

    Dana M. Lewis, Richard S. Swain, and Thomas W. Donner. 2018. Improvements in A1C and time-in-range in DIY closed-loop (OpenAPS) users. Am Diabetes Assoc, 67, Supplement 1 (July 2018). DOI:.CrossrefGoogle Scholar

  • 60.

    Maggie Koerth-Baker. 2018. The tricky ethics and big risks of medical ‘data donation’ [Online: https://www.advisory.com/daily-briefing/2018/07/18/personal-data; Accessed: June 10, 2019].Google Scholar

  • 61.

    Barbara Preinsack. 2019. Data Donation: How to resist the iLeviathan. In The Ethics of Medical Data Donation. Jenny Krutzinna and Luciano Floridi, editors. Springer, 9–22.Google Scholar

  • 62.

    Quinn Grundy, Kellia Chiu, Fabian Held, Andrea Continella, et al. 2019. Data sharing practices of medicines related apps and the mobile ecosystem: traffic, content, and network analysis. BMJ, 364, 1920. DOI:.CrossrefGoogle Scholar

  • 63.

    Joshua M. Pevnick, Garth Fuller, Ray Duncan, and Brennan M. R. Spiegel. 2016. A large-scale initiative inviting patients to share personal fitness tracker data with their providers: initial results. PLOS ONE, 11, 11, 1–5. DOI:.CrossrefGoogle Scholar

  • 64.

    Quinn Grundy, Fabian Held, and Lisa A. Bero. 2017. Tracing the Potential Flow of Consumer Data: A Network Analysis of Prominent Health and Fitness Apps. J Med Internet Res, 19, 6, e233. DOI:.CrossrefGoogle Scholar

  • 65.

    Jenny Krutzinna and Luciano Floridi. 2019. Ethical Medical Data Donation: A Pressing Issue. In The Ethics of Medical Data Donation. Jenny Krutzinna and Luciano Floridi, editors. Springer, 1–6.Google Scholar

  • 66.

    Monika Pobiruchin, Julian Suleder, Richard Zowalla, and Martin Wiesner. 2017. Accuracy and Adoption of Wearable Technology Used by Active Citizens: A Marathon Event Field Study. JMIR mhealth uhealth, 5, 2, e24. DOI:.CrossrefGoogle Scholar

  • 67.

    Arthur Jochems, Timo M. Deist, Johan van Soest, Michael Eble, Paul Bulens, et al. 2016. Distributed learning: Developing a predictive model based on data from multiple hospitals without data leaving the hospital – A real life proof of concept. Radiotherapy and Oncology, 121, 3, 459–467. DOI:.CrossrefGoogle Scholar

About the article

Veronika Strotbaum

Veronika Strotbaum, B.A. Gerontology and M.A., Healthcare Management has been working at ZTG Zentrum für Telematik und Telemedizin GmbH in Bochum as a consultant for telemedicine and mobile applications since 2013. Her work focuses on the evaluation and acceptance analysis of digital health applications, health reporting as well as the conception and implementation of advanced training courses in eHealth. She has written a wide range of articles in books and journals and is a member of the DGGÖ e.V. and GMDS e.V.

Monika Pobiruchin

Dr. Monika Pobiruchin received her diploma in Medical Informatics in 2010. Currently she is a research associate at GECKO Institute at Heilbronn University. Her doctoral thesis focused on the use of data from cancer registries for the generation of health economic models. Since 2014, she has been (co-)chair of the working group “Consumer Health Informatics” within GMDS e.V.

Björn Schreiweis

Dr. Björn Schreiweis obtained his diploma in Medical Informatics (MI) at University of Heidelberg, Germany, in 2010. He finished his doctoral degree on cross-enterprise patient recruitment systems in 2016 at Heidelberg University. Since 2017, he is co-chair of the working group “Consumer Health Informatics” of the GMDS e.V. As of April 2018 he is a Senior Researcher at Dept. of MI at the Institute for Medical Informatics and Statistics of University Hospital Schleswig-Holstein (UKSH) & Kiel University. Since September 2018 he is Head of the Medical Data Integration Center at UKSH.

Martin Wiesner

Dipl.-Inform. Med. Martin Wiesner received his diploma in Medical Informatics at University of Heidelberg in 2007. He is working as a research associate at Heilbronn University and teaches software development, database and information systems. In 2014, he (co-)founded the working group “Consumer Health Informatics” within GMDS e.V. His research interest focuses on digital health applications and how related technology affects healthy citizens or patients.

Brigitte Strahwald

Brigitte Strahwald, MSc Mmel is an anesthesiologist with a master’s degree in epidemiology and a master’s degree in med. ethics and law. She is working at the LMU Munich and as managing director of an agency for health communication.


Received: 2019-06-28

Revised: 2019-09-30

Accepted: 2019-11-08

Published Online: 2019-11-26

Published in Print: 2019-10-25


Citation Information: it - Information Technology, Volume 61, Issue 5-6, Pages 219–229, ISSN (Online) 2196-7032, ISSN (Print) 1611-2776, DOI: https://doi.org/10.1515/itit-2019-0024.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in