Jump to ContentJump to Main Navigation
Show Summary Details
More options 

Journal of Applied Analysis

Editor-in-Chief: Fechner, WƂodzimierz / Ciesielski, Krzysztof

Managing Editor: Gajek, Leslaw

CiteScore 2018: 0.45

SCImago Journal Rank (SJR) 2018: 0.181
Source Normalized Impact per Paper (SNIP) 2018: 0.845

Mathematical Citation Quotient (MCQ) 2018: 0.20

See all formats and pricing
More options 

Volume 24, Issue 1


Deferred weighted 𝒜-statistical convergence based upon the (p,q)-Lagrange polynomials and its applications to approximation theorems

H. M. Srivastava
  • Corresponding author
  • Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3R4, Canada; and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bidu Bhusan Jena / Susanta Kumar Paikray / U. K. Misra
  • Department of Mathematics, National Institute of Science and Technology, Palur Hills, Golanthara 761008, Odisha, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-03 | DOI: https://doi.org/10.1515/jaa-2018-0001


Recently, the notion of positive linear operators by means of basic (or q-) Lagrange polynomials and 𝒜-statistical convergence was introduced and studied in [M. Mursaleen, A. Khan, H. M. Srivastava and K. S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput. 219 2013, 12, 6911–6918]. In our present investigation, we introduce a certain deferred weighted 𝒜-statistical convergence in order to establish some Korovkin-type approximation theorems associated with the functions 1, t and t2 defined on a Banach space Cⁱ[0,1] for a sequence of (presumably new) positive linear operators based upon (p,q)-Lagrange polynomials. Furthermore, we investigate the deferred weighted 𝒜-statistical rates for the same set of functions with the help of the modulus of continuity and the elements of the Lipschitz class. We also consider a number of interesting special cases and illustrative examples in support of our definitions and of the results which are presented in this paper.

Keywords: Statistical convergence; Korovkin-type approximation theorems; rate of convergence; modulus of continuity; Lipschitz class; Lagrange polynomials; Chan–Chyan–Srivastava polynomials

MSC 2010: 40A05; 41A36; 40G15


  • [1]

    R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33 (1932), no. 3, 413–421. CrossrefGoogle Scholar

  • [2]

    A. Aral and O. Doğru, Bleimann, Butzer, and Hahn operators based on the q-integers, J. Inequal. Appl. 2007 (2007), Article ID 79410. Web of ScienceGoogle Scholar

  • [3]

    A. Aral and V. Gupta, On the q analogue of Stancu-beta operators, Appl. Math. Lett. 25 (2012), no. 1, 67–71. CrossrefWeb of ScienceGoogle Scholar

  • [4]

    C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (2013), no. 18, 9821–9826. Web of ScienceGoogle Scholar

  • [5]

    J. Boos, Classical and Modern Methods in Summability, Oxford Math. Monogr., Oxford University Press, Oxford, 2000. Google Scholar

  • [6]

    N. L. Braha, V. Loku and H. M. Srivastava, Λ2-weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput. 266 (2015), 675–686. Web of ScienceGoogle Scholar

  • [7]

    N. L. Braha, H. M. Srivastava and S. A. Mohiuddine, A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la VallĂ©e Poussin mean, Appl. Math. Comput. 228 (2014), 162–169. Google Scholar

  • [8]

    W.-C. C. Chan, C.-J. Chyan and H. M. Srivastava, The Lagrange polynomials in several variables, Integral Transforms Spec. Funct. 12 (2001), no. 2, 139–148. CrossrefGoogle Scholar

  • [9]

    E. E. Duman, A q-extension of the Erkus–Srivastava polynomials in several variables, Taiwanese J. Math. 12 (2008), no. 2, 539–543. CrossrefGoogle Scholar

  • [10]

    E. ErkuƟ, O. Duman and H. M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan–Chyan–Srivastava polynomials, Appl. Math. Comput. 182 (2006), no. 1, 213–222. Google Scholar

  • [11]

    S. Ersan and O. Doğru, Statistical approximation properties of q-Bleimann, Butzer and Hahn operators, Math. Comput. Model. 49 (2009), no. 7–8, 1595–1606. Web of ScienceCrossrefGoogle Scholar

  • [12]

    H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. CrossrefGoogle Scholar

  • [13]

    A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293–305. CrossrefGoogle Scholar

  • [14]

    A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), no. 1, 129–138. CrossrefGoogle Scholar

  • [15]

    V. Gupta and C. Radu, Statistical approximation properties of q-Baskakov–Kantorovich operators, Cent. Eur. J. Math. 7 (2009), no. 4, 809–818. Web of ScienceGoogle Scholar

  • [16]

    U. Kadak, N. L. Braha and H. M. Srivastava, Statistical weighted ℬ-summability and its applications to approximation theorems, Appl. Math. Comput. 302 (2017), 80–96. Google Scholar

  • [17]

    V. Karakaya and T. A. Chishti, Weighted statistical convergence, Iran. J. Sci. Technol. Trans. A Sci. 33 (2009), no. 3, 219–223. Google Scholar

  • [18]

    N. Mahmudov and P. Sabancigil, A q-analogue of the Meyer–König and Zeller operators, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 39–51. Google Scholar

  • [19]

    S. A. Mohiuddine, Statistical weighted A-summability with application to Korovkin’s type approximation theorem, J. Inequal. Appl. 2016 (2016), Article ID 101. Web of ScienceGoogle Scholar

  • [20]

    M. Mursaleen, A. Alotaibi and K. J. Ansari, On a Kantorovich variant of (p,q)-Szász–Mirakjan operators, J. Funct. Spaces 2016 (2016), Article ID 1035253. Web of ScienceGoogle Scholar

  • [21]

    M. Mursaleen, K. J. Ansari and A. Khan, On (p,q)-analogue of Bernstein operators, Appl. Math. Comput. 266 (2015), 874–882. Web of ScienceGoogle Scholar

  • [22]

    M. Mursaleen, K. J. Ansari and A. Khan, Some approximation results by (p,q)-analogue of Bernstein–Stancu operators, Appl. Math. Comput. 264 (2015), 392–402. Web of ScienceGoogle Scholar

  • [23]

    M. Mursaleen, V. Karakaya, M. ErtĂŒrk and F. GĂŒrsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218 (2012), no. 18, 9132–9137. Web of ScienceGoogle Scholar

  • [24]

    M. Mursaleen and A. Khan, Statistical approximation properties of modified q-Stancu-beta operators, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 3, 683–690. Google Scholar

  • [25]

    M. Mursaleen, A. Khan, H. M. Srivastava and K. S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput. 219 (2013), no. 12, 6911–6918. Web of ScienceGoogle Scholar

  • [26]

    M. Mursaleen, F. Khan and A. Khan, Approximation by (p,q)-Lorentz polynomials on a compact disk, Complex Anal. Oper. Theory 10 (2016), no. 8, 1725–1740. Web of ScienceGoogle Scholar

  • [27]

    M. Mursaleen, M. Nasiruzzaman and A. Nurgali, Some approximation results on Bernstein–Schurer operators defined by (p,q)-integers, J. Inequal. Appl. 2015 (2015), Article ID 49. Web of ScienceGoogle Scholar

  • [28]

    M. ÖrkcĂŒ and O. Doğru, Weighted statistical approximation by Kantorovich type q-SzĂĄsz–Mirakjan operators, Appl. Math. Comput. 217 (2011), no. 20, 7913–7919. Web of ScienceGoogle Scholar

  • [29]

    M. A. Özarslan, O. Duman and H. M. Srivastava, Statistical approximation results for Kantorovich-type operators involving some special polynomials, Math. Comput. Model. 48 (2008), no. 3–4, 388–401. Web of ScienceCrossrefGoogle Scholar

  • [30]

    C. Radu, Statistical approximation properties of Kantorovich operators based on q-integers, Creat. Math. Inform. 17 (2008), no. 2, 75–84. Google Scholar

  • [31]

    H. M. Srivastava and M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α, Filomat 31 (2017), no. 6, 1573–1582. CrossrefWeb of ScienceGoogle Scholar

  • [32]

    H. M. Srivastava, B. B. Jena, S. K. Paikray and U. K. Misra, Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM (2017), 10.1007/s13398-017-0442-3. Google Scholar

  • [33]

    H. M. Srivastava, B. B. Jena, S. K. Paikray and U. K. Misra, A certain class of weighted statistical convergence and associated Korovkin-type approximation theorems involving trigonometric functions, Math. Methods Appl. Sci. 41 (2018), no. 2, 671–683. Web of ScienceGoogle Scholar

  • [34]

    H. M. Srivastava, M. Mursaleen, A. M. Alotaibi, M. Nasiruzzaman and A. A. H. Al-Abied, Some approximation results involving the q-Szász–Mirakjan–Kantorovich type operators via Dunkl’s generalization, Math. Methods Appl. Sci. 40 (2017), no. 15, 5437–5452. Web of ScienceCrossrefGoogle Scholar

  • [35]

    H. M. Srivastava, M. Mursaleen and A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Model. 55 (2012), no. 9–10, 2040–2051. CrossrefWeb of ScienceGoogle Scholar

  • [36]

    H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74. Google Scholar

About the article

Received: 2018-02-24

Accepted: 2018-04-12

Published Online: 2018-05-03

Published in Print: 2018-06-01

Citation Information: Journal of Applied Analysis, Volume 24, Issue 1, Pages 1–16, ISSN (Online) 1869-6082, ISSN (Print) 1425-6908, DOI: https://doi.org/10.1515/jaa-2018-0001.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

H. Srivastava, B. Jena, S. Paikray, and U. Misra
Symmetry, 2019, Volume 11, Number 4, Page 448
Behar Baxhaku and Artan Berisha
Mathematical Methods in the Applied Sciences, 2019, Volume 42, Number 6, Page 1984
Haifa Bin Jebreen, Mohammad Mursaleen, and Ambreen Naaz
Advances in Difference Equations, 2018, Volume 2018, Number 1

Comments (0)

Please log in or register to comment.
Log in