Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Agricultural & Food Industrial Organization

Ed. by Azzam, Azzeddine

CiteScore 2017: 0.76

SCImago Journal Rank (SJR) 2017: 0.325
Source Normalized Impact per Paper (SNIP) 2017: 0.402

See all formats and pricing
More options …

Modeling Eye Movements and Response Times in Consumer Choice

Ian Krajbich
  • Corresponding author
  • Department of Psychology, The Ohio State University, 200E Lazenby Hall, Columbus, OH 43210, USA
  • Department of Economics, The Ohio State University, 415 Arps Hall, Columbus, OH 43210, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stephanie M. Smith
  • Department of Psychology, The Ohio State University, 200A Lazenby Hall, Columbus, OH 43210, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-19 | DOI: https://doi.org/10.1515/jafio-2015-0016


Peoples’ choices are not instantaneous, nor are they perfectly self consistent. While these two facts may at first seem unrelated, they are in fact inextricably linked. Decision scientists are accustomed to using logit and probit models to account for “noise” in their choice data. But what is the driving force behind these behavioral inconsistencies? Random utility theory (RUT) provides little guidance in this respect. While providing a mathematical basis for dealing with stochastic choice, RUT is agnostic about whether the noise is due to unobserved characteristics of the decision maker and/or the choice environment, or due to actual “mistakes.” The distinction is important because the former implies that from the point of view of the decision maker, her choices are perfectly consistent, while the latter implies that the decision maker herself may be surprised by her set of choices. Here we argue that non-choice (“process”) data strongly favors the latter explanation. Rather than thinking of choice as an instantaneous realization of stored preferences, we instead conceptualize choice as a dynamical process of information accumulation and comparison. Adapting “sequential sampling models” from cognitive psychology to economic choice, we illustrate the surprisingly complex relationship between choice and response-time data. Finally, we review recent data demonstrating how other process measures such as eye-tracking and neural recordings can be incorporated into this modeling approach, yielding further insights into the choice process.

Keywords: consumer choice; eye tracking; reaction times; sequential sampling model; drift diffusion model; attention


  • Arieli, A., Y. Ben-Ami, and A. Rubinstein. 2011. “Tracking Decision Makers Under Uncertaint.” American Economic Journal: Microeconomics 3 (4):68–76.Google Scholar

  • Armel, K. C., A. Beaumel, and A. Rangel. 2008. “Biasing Simple Choices by Manipulating Relative Visual Attention.” Judgment and Decision Making 3 (5):396–403.Google Scholar

  • Aschenbrenner, K. M., D. Albert, and F. Schmalhofer. 1984. “Stochastic Choice Heuristics.” Acta Psychologica 56 (1–3):153–66. http://doi.org/10.1016/0001-6918(84)90015-5.CrossrefGoogle Scholar

  • Ashby, N. J., S. Dickert, and A. Glöckner. 2012. “Focusing on What You Own: Biased Information Uptake Due To Ownership.” Judgment and Decision Making 7 (3):254–67.Google Scholar

  • Bagdziunaite, D., K. Nassri, J. Clement, and T. Z. Ramsøy. 2014. An added value of neuroscientific tools to understand consumers’ in-store behaviour. In EMAC 2014.

  • Balcombe, K., I. Fraser, and E. McSorley. 2015. “Visual Attention and Attribute Attendance in Multi-Attribute Choice Experiments: Discrete-Choice Experiments and Eye-Tracking.” Journal of Applied Econometrics 30 (3):447–67. http://doi.org/10.1002/jae.2383.CrossrefGoogle Scholar

  • Becker, G. M., M. H. Degroot, and J. Marschak. 1964. “Measuring Utility by a Single-Response Sequential Method.” Behavioral Science 9 (3):226–32.Google Scholar

  • Bogacz, R. 2007. “Optimal Decision-Making Theories: Linking Neurobiology with Behaviour.” Trends in Cognitive Sciences 11 (3):118–25. http://doi.org/10.1016/j.tics.2006.12.006.CrossrefGoogle Scholar

  • Bordalo, P., N. Gennaioli, and A. Shleifer. 2013. “Salience and Consumer Choice.” Journal of Political Economy 121 (5):803–43. http://doi.org/10.1086/673885.CrossrefGoogle Scholar

  • Brocas, I., J. D. Carrillo, S. W. Wang, and C. F. Camerer. 2014. “Imperfect Choice or Imperfect Attention? Understanding Strategic Thinking in Private Information Games.” The Review of Economic Studies 81 (3):944–70. http://doi.org/10.1093/restud/rdu001.CrossrefGoogle Scholar

  • Busemeyer, J. 1982. “Choice Behavior in a Sequential Decision-Making Task.” Organizational Behavior & Human Performance 29 (2):175–207. http://doi.org/10.1016/0030-5073(82)90255-0.CrossrefGoogle Scholar

  • Busemeyer, J. 1985. “Decision Making Under Uncertainty: Simple Scalability, Fixed Sample, and Sequential Sampling Models.” Journal of Experimental Psychology: Learning, Memory, and Cognition 11:538–64.Google Scholar

  • Busemeyer, J., and J. Townsend. 1993. “Decision Field Theory: A Dynamic-Cognitive Approach to Decision Making in an Uncertain Environment.” Psychological Review 100 (3):432–59. http://doi.org/10.1037/0033-295X.100.3.432.CrossrefGoogle Scholar

  • Cavanagh, J. F., T. V. Wiecki, A. Kochar, and M. J. Frank. 2014. “Eye Tracking and Pupillometry Are Indicators of Dissociable Latent Decision Processes.” Journal of Experimental Psychology: General 143 (4):1476–88. http://doi.org/10.1037/a0035813.CrossrefGoogle Scholar

  • Chabris, C. F., C. L. Morris, D. Taubinsky, D. Laibson, and J. P. Schuldt. 2009. “The Allocation of Time in Decision-Making.” Journal of the European Economic Association 7 (2–3):628–37.Google Scholar

  • Chen, W., S.-Y. Liu, C.-H. Chen, and Y.-S. Lee. 2011. “Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games.” Games 2 (1):187–99. http://doi.org/10.3390/g2010187.CrossrefGoogle Scholar

  • Costa-Gomes, M., V. P. Crawford, and B. Broseta. 2001. “Cognition and Behavior in Normal-Form Games: An Experimental Study.” Econometrica 69 (5):1193–235. http://doi.org/10.1111/1468-0262.00239.CrossrefGoogle Scholar

  • Dai, J., and J. Busemeyer. 2014. “A Probabilistic, Dynamic, and Attribute-Wise Model of Intertemporal Choice.” Journal of Experimental Psychology: General 143 (4):1489–514. http://doi.org/10.1037/a0035976.CrossrefGoogle Scholar

  • Dickhaut, J., A. Rustichini, and V. Smith. 2009. “A Neuroeconomic Theory of the Decision Process.” Proceedings of the National Academy of Sciences of the United States of America 106 (52):22145–50.Google Scholar

  • Diederich, A. 1997. “Dynamic Stochastic Models for Decision Making Under Time Constraints.” Journal of Mathematical Psychology 41 (3):260–74. http://doi.org/10.1006/jmps.1997.1167.CrossrefGoogle Scholar

  • Diederich, A. 2003. “Decision Making Under Conflict: Decision Time as a Measure of Conflict Strength.” Psychonomic Bulletin & Review 10 (1):167–76. http://doi.org/10.3758/BF03196481.CrossrefGoogle Scholar

  • Dragalin, V. P., A. G. Tartakovsky, and V. V. Veeravalli. 1999. “Multihypothesis Sequential Probability Ratio Tests – Part I: Asymptotic Optimality.” IEEE Transactions on Information Theory 45:2448–61.Google Scholar

  • Eliaz, K., and A. Rubinstein. 2014. “A Model of Boundedly Rational “Neuro” Agents.” Economic Theory 57 (3):515–28. http://doi.org/10.1007/s00199-014-0834-y.CrossrefGoogle Scholar

  • Fehr, E., and K. M. Schmidt. 1999. “A Theory of Fairness, Competition, and Cooperation.” The Quarterly Journal of Economics 114 (3):817–68.Google Scholar

  • Fiedler, S., and A. Glöckner. 2012. “The Dynamics of Decision Making in Risky Choice: An Eye-Tracking Analysis.” Frontiers in Psychology 3. http://doi.org/10.3389/fpsyg.2012.00335.CrossrefGoogle Scholar

  • Gabaix, X., D. Laibson, G. Moloche, and S. Weinberg. 2006. “Costly Information Acquisition: Experimental Analysis of a Boundedly Rational Model.” The American Economic Review 96 (4):1043–68.Google Scholar

  • Gluth, S., J. Rieskamp, and C. Büchel. 2012. “Deciding When to Decide: Time-Variant Sequential Sampling Models Explain the Emergence of Value-Based Decisions in the Human Brain.” The Journal of neuroscience 32 (31):10686–98. http://doi.org/10.1523/JNEUROSCI.0727-12.2012.CrossrefGoogle Scholar

  • Gold, J. I., and M. N. Shadlen. 2007. “The Neural Basis of Decision Making.” Annual Review of Neuroscience 30 (1):535–74. http://doi.org/10.1146/annurev.neuro.29.051605.113038.CrossrefGoogle Scholar

  • Graham, D. J., and R. W. Jeffery. 2012. “Predictors of Nutrition Label Viewing During Food Purchase Decision Making: An Eye Tracking Investigation.” Public Health Nutrition 15 (02):189–97. http://doi.org/10.1017/S1368980011001303.CrossrefGoogle Scholar

  • Hanes, D. P., and J. D. Schall. 1996. “Neural Control of Voluntary Movement Initiation.” Science 274 (5286):427–30. http://doi.org/10.1126/science.274.5286.427.CrossrefGoogle Scholar

  • Hare, T. A., J. Malmaud, and A. Rangel. 2011. “Focusing Attention on the Health Aspects of Foods Changes Value Signals in vmPFC and Improves Dietary Choice.” The Journal of neuroscience 31 (30):11077–87.Google Scholar

  • Henmon, V. A. C. 1906. “The Time of Perception as a Measure of Differences in Sensation.” Archives of Philosophy, Psychology, and Scientific Method 8:5–75.

  • Hunt, L. T., N. Kolling, A. Soltani, M. W. Woolrich, M. F. S. Rushworth, and T. E. J. Behrens. 2012. “Mechanisms Underlying Cortical Activity During Value-Guided Choice.” Nature Neuroscience 15 (3):470–6. http://doi.org/10.1038/nn.3017.CrossrefGoogle Scholar

  • Hutcherson, C. A., B. Bushong, and A. Rangel. 2015. “A Neurocomputational Model of Altruistic Choice and Its Implications.” Neuron 87 (2):451–62. http://doi.org/10.1016/j.neuron.2015.06.031.CrossrefGoogle Scholar

  • Johnson, J., and J. Busemeyer. 2005. “A Dynamic, Stochastic, Computational Model of Preference Reversal Phenomena.” Psychological Review 112 (4): 841–61. http://doi.org/10.1037/0033-295X.112.4.841Crossref

  • Johnson, E. J., C. Camerer, S. Sen, and T. Rymon. 2002. “Detecting Failures of Backward Induction: Monitoring Information Search in Sequential Bargaining.” Journal of Economic Theory 104 (1):16–47. http://doi.org/10.1006/jeth.2001.2850.CrossrefGoogle Scholar

  • Kahneman, D., and A. Tversky. 1979. “Prospect Theory: An Analysis of Decision Under Risk.” Econometrica 47 (2):263. http://doi.org/10.2307/1914185.CrossrefGoogle Scholar

  • Kim, B. E., D. Seligman, and J. W. Kable. 2012. “Preference Reversals in Decision Making Under Risk Are Accompanied by Changes in Attention to Different Attributes.” Frontiers in Neuroscience 6. Accessed 14 July 2015. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400145/.Google Scholar

  • Krajbich, I., C. Armel, and A. Rangel. 2010. “Visual Fixations and the Computation and Comparison of Value in Simple Choice.” Nature Neuroscience 13 (10):1292–8. http://doi.org/10.1038/nn.2635.CrossrefGoogle Scholar

  • Krajbich, I., B. Bartling, T. Hare, and E. Fehr. 2015. “Rethinking Fast and Slow Based on a Critique of Reaction-Time Reverse Inference.” Nature Communications 6. http://doi.org/10.1038/ncomms8455.CrossrefGoogle Scholar

  • Krajbich, I., T. Hare, B. Bartling, Y. Morishima, and E. Fehr. 2015. “A Common Mechanism Underlying Food Choice and Social Decisions.” PLoS Computational Biology 11 (10): e1004371. doi:.Crossref

  • Krajbich, I., D. Lu, C. Camerer, and A. Rangel. 2012. “The Attentional Drift-Diffusion Model Extends to Simple Purchasing Decisions.” Frontiers in Psychology 3. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374478/.Google Scholar

  • Krajbich, I., B. Oud, and E. Fehr. 2014. “Benefits of Neuroeconomic Modeling: New Policy Interventions and Predictors of Preference.” The American Economic Review 104 (5):501–6.Google Scholar

  • Krajbich, I., and A. Rangel. 2011. “Multialternative Drift-Diffusion Model Predicts the Relationship Between Visual Fixations and Choice in Value-Based Decisions.” Proceedings of the National Academy of Sciences 108 (33):13852–7. http://doi.org/10.1073/pnas.1101328108.CrossrefGoogle Scholar

  • Kwak, Y., J. W. Payne, A. L. Cohen, and S. A. Huettel. 2015. “The Rational Adolescent: Strategic Information Processing During Decision Making Revealed by Eye Tracking.” Cognitive Development 36:20–30, http://doi.org/10.1016/j.cogdev.2015.08.001.CrossrefGoogle Scholar

  • Laibson, D. 1997. “Golden Eggs and Hyperbolic Discounting.” The Quarterly Journal of Economics 112 (2):443–77.Google Scholar

  • Laming, D. R. J. 1968. Information Theory of Choice-Reaction Times. Oxford, England: Academic Press.Google Scholar

  • Lim, S.-L., J. P. O’Doherty, and A. Rangel. 2011. “The Decision Value Computations in the vmPFC and Striatum Use a Relative Value Code That Is Guided by Visual Attention.” The Journal of neuroscience 31 (37):13214–23.Google Scholar

  • Link, S. W. 1975. “The Relative Judgment Theory of Two Choice Response Time.” Journal of Mathematical Psychology 12 (1):114–35. http://doi.org/10.1016/0022-2496(75)90053-X.CrossrefGoogle Scholar

  • McMillen, T., and P. Holmes. 2006. “The Dynamics of Choice Among Multiple Alternatives.” Journal of Mathematical Psychology 50 (1):30–57. http://doi.org/10.1016/j.jmp.2005.10.003.CrossrefGoogle Scholar

  • Mcfadden, D. 1974. “Conditional Logit Analysis of Qualitative Choice Behavior.” In Frontiers in Econometrics, edited by P. Zarembka (Ed. pp. 105–142). New York: Academic Press.Google Scholar

  • Milosavljevic, M., J. Malmaud, A. Huth, C. Koch, and A. Rangel. 2010. “The Drift Diffusion Model Can Account for Value-Based Choice Response Times Under High and Low Time Pressure.” Judgment and Decision Making 5 (6):437–49.Google Scholar

  • Mormann, M. M., V. Navalpakkam, C. Koch, and A. Rangel. 2012. “Relative Visual Saliency Differences Induce Sizable Bias in Consumer Choice.” Journal of Consumer Psychology 22 (1). Accessed 14 July 2015. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1998433.Google Scholar

  • Orquin, J. L., and S. M. Loose. 2013. “Attention and Choice: A Review on Eye Movements in Decision Making.” Acta Psychologica 144 (1):190–206.Google Scholar

  • Petrusic, W. M., and D. G. Jamieson. 1978. “Relation Between Probability of Preferential Choice and Time to Choose Changes with Practice.” Journal of Experimental Psychology: Human Perception and Performance 4 (3):471–82. http://doi.org/10.1037/0096-1523.4.3.471.CrossrefGoogle Scholar

  • Philiastides, M. G., and R. Ratcliff. 2013. “Influence of Branding on Preference-Based Decision Making.” Psychological Science 0956797612470701.

  • Pike, A. R. 1966. “Stochastic Models of Choice Behaviour: Response Probabilities and Latencies of Finite Markov Chain Systems1.” British Journal of Mathematical and Statistical Psychology 19 (1):15–32. http://doi.org/10.1111/j.2044-8317.1966.tb00351.x.CrossrefGoogle Scholar

  • Polanía, R., I. Krajbich, M. Grueschow, and C. C. Ruff. 2014. “Neural Oscillations and Synchronization Differentially Support Evidence Accumulation in Perceptual and Value-Based Decision Making.” Neuron 82 (3):709–20. http://doi.org/10.1016/j.neuron.2014.03.014.CrossrefGoogle Scholar

  • Polonio, L., S. Di Guida, G. Coricelli, S. Di Guida, and G. Coricelli. 2014. Strategic sophistication and attention in games: an eye-tracking study. ECARES Working Papers. Accessed 14 July 2015.

  • Pärnamets, P., P. Johansson, L. Hall, C. Balkenius, M. J. Spivey, and D. C. Richardson. 2015. “Biasing Moral Decisions by Exploiting the Dynamics of Eye Gaze.” Proceedings of the National Academy of Sciences 112 (13):4170–5. http://doi.org/10.1073/pnas.1415250112.CrossrefGoogle Scholar

  • Ratcliff, R. 1978. “A Theory of Memory Retrieval.” Psychological Review 85 (2):59–108. http://doi.org/10.1037/0033-295X.85.2.59.CrossrefGoogle Scholar

  • Ratcliff, R. 2002. “A Diffusion Model Account of Response Time and Accuracy in a Brightness Discrimination Task: Fitting Real Data and Failing to Fit Fake but Plausible Data.” Psychonomic Bulletin & Review 9 (2):278–91. http://doi.org/10.3758/BF03196283.CrossrefGoogle Scholar

  • Ratcliff, R. 2014. “Measuring Psychometric Functions with the Diffusion Model.” Journal of Experimental Psychology: Human Perception and Performance 40 (2):870–88. http://doi.org/10.1037/a0034954.CrossrefGoogle Scholar

  • Ratcliff, R., and G. McKoon. 1982. “Speed and Accuracy in the Processing of False Statements About Semantic Information.” Journal of Experimental Psychology: Learning, Memory, and Cognition 8 (1):16.Google Scholar

  • Ratcliff, R., and G. McKoon. 2008. “The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks.” Neural Computation 20 (4):873–922.Google Scholar

  • Ratcliff, R., and P. L. Smith. 2004. “A Comparison of Sequential Sampling Models for Two-Choice Reaction Time.” Psychological Review 111 (2):333–67. http://doi.org/10.1037/0033-295X.111.2.333.CrossrefGoogle Scholar

  • Reutskaja, E., R. Nagel, C. F. Camerer, and A. Rangel. 2011. “Search Dynamics in Consumer Choice Under Time Pressure: An Eye-Tracking Study.” American Economic Review 101 (2):900–26. http://doi.org/10.1257/aer.101.2.900.CrossrefGoogle Scholar

  • Rodriguez, C. A., B. M. Turner, and S. M. McClure. 2014. “Intertemporal Choice as Discounted Value Accumulation.” PLoS ONE 9:e90138.Google Scholar

  • Roe, R. M., J. Busemeyer, and J. Townsend. 2001. “Multialternative Decision Field Theory: A Dynamic Connectionst Model of Decision Making.” Psychological Review 108 (2):370–92. http://doi.org/10.1037/0033-295X.108.2.370.CrossrefGoogle Scholar

  • Roitman, J. D., and M. N. Shadlen. 2002. “Response of Neurons in the Lateral Intraparietal Area During a Combined Visual Discrimination Reaction Time Task.” The Journal of neuroscience 22 (21):9475–89.Google Scholar

  • Rubinstein, A. 2007. “Instinctive and Cognitive Reasoning: A Study of Response Times*.” The Economic Journal 117 (523):1243–59.Google Scholar

  • Rubinstein, A. 2013. “Response Time and Decision Making: An Experimental Study.” Judgment and Decision Making 8 (5):540–51.Google Scholar

  • Schonberg, T., A. Bakkour, A. M. Hover, J. A. Mumford, L. Nagar, J. Perez, and R. A. Poldrack. 2014. “Changing Value Through Cued Approach: An Automatic Mechanism of Behavior Change.” Nature Neuroscience 17 (4):625–30. http://doi.org/10.1038/nn.3673.CrossrefGoogle Scholar

  • Schonberg, T., A. Bakkour, A. M. Hover, J. A. Mumford, and R. A. Poldrack. 2014. “Influencing Food Choices by Training: Evidence for Modulation of Frontoparietal Control Signals.” Journal of Cognitive Neuroscience 26 (2):247–68. http://doi.org/10.1162/jocn_a_00495.CrossrefGoogle Scholar

  • Schotter, A., and I. Trevino. 2014. Is response time predictive of choice? An experimental study of threshold strategies. WZB Discussion Paper. Accessed 14 July 2015. http://www.econstor.eu/handle/10419/98843

  • Shadlen, M. N., and W. T. Newsome. 2001. “Neural Basis of a Perceptual Decision in the Parietal Cortex (Area LIP) of the Rhesus Monkey.” Journal of Neurophysiology 86 (4):1916–36.Google Scholar

  • Shimojo, S., C. Simion, E. Shimojo, and C. Scheier. 2003. “Gaze Bias Both Reflects and Influences Preference.” Nature Neuroscience 6 (12):1317–22. http://doi.org/10.1038/nn1150.CrossrefGoogle Scholar

  • Stewart, N., S. Gächter, T. Noguchi, and T. L. Mullett. 2015. Eye Movements in Strategic Choice. Accessed 14 July 2015. http://www.stewart.warwick.ac.uk/publications/papers/Stewart_Gaechter_Noguchi_Mullett_2015.pdf

  • Stewart, N., F. Hermens, and W. J. Matthews. 2015. “Eye Movements in Risky Choice.” Journal of Behavioral Decision Making. Accessed 14 July 2015. http://onlinelibrary.wiley.com/doi/10.1002/bdm.1854/full.Crossref

  • Stone, M. 1960. “Models for Choice-Reaction Time.” Psychometrika 25 (3):251–60. http://doi.org/10.1007/BF02289729.CrossrefGoogle Scholar

  • Towal, R. B., M. Mormann, and C. Koch. 2013. “Simultaneous Modeling of Visual Saliency and Value Computation Improves Predictions of Economic Choice.” Proceedings of the National Academy of Sciences 110 (40):E3858–E3867.Google Scholar

  • Tuerlinckx, F., E. Maris, R. Ratcliff, and P. D. Boeck. 2001. “A Comparison of Four Methods for Simulating the Diffusion Process.” Behavior Research Methods, Instruments, & Computers 33 (4):443–56. http://doi.org/10.3758/BF03195402.CrossrefGoogle Scholar

  • Vandekerckhove, J., and F. Tuerlinckx. 2007. “Fitting the Ratcliff Diffusion Model to Experimental Data.” Psychonomic Bulletin & Review 14 (6):1011–26. http://doi.org/10.3758/BF03193087.CrossrefGoogle Scholar

  • Vandekerckhove, J., and F. Tuerlinckx. 2008. “Diffusion Model Analysis with MATLAB: A DMAT Primer.” Behavior Research Methods 40 (1):61–72. http://doi.org/10.3758/BRM.40.1.61.CrossrefGoogle Scholar

  • Venkatraman, V., J. W. Payne, and S. A. Huettel. 2014. “An Overall Probability of Winning Heuristic for Complex Risky Decisions: Choice and Eye Fixation Evidence.” Organizational Behavior and Human Decision Processes 125 (2):73–87. http://doi.org/10.1016/j.obhdp.2014.06.003.CrossrefGoogle Scholar

  • van der Lans, R., R. Pieters, and M. Wedel. 2008. “Research Note – Competitive Brand Salience.” Marketing Science 27 (5):922–31. http://doi.org/10.1287/mksc.1070.0327.CrossrefGoogle Scholar

  • Wabersich, D., and J. Vandekerckhove. 2014. “The RWiener Package: An R Package Providing Distribution Functions for the Wiener Diffusion Model.” The R Journal 6 (1):49–56.Google Scholar

  • Wagenmakers, E.-J., H. L. Van Der Maas, and R. P. Grasman. 2007. “An EZ-Diffusion Model for Response Time and Accuracy.” Psychonomic Bulletin & Review 14 (1):3–22.Google Scholar

  • Wald, A. 1945. “Sequential Tests of Statistical Hypotheses.” The Annals of Mathematical Statistics 16 (2):117–86.Google Scholar

  • Wang, J. T., M. Spezio, and C. F. Camerer. 2010. “Pinocchio’s Pupil: Using Eyetracking and Pupil Dilation to Understand Truth Telling and Deception in Sender-Receiver Games.” The American Economic Review 100 (3):984–1007. http://doi.org/10.1257/aer.100.3.984.CrossrefGoogle Scholar

  • Wiecki, T. V., I. Sofer, and M. J. Frank. 2013. “HDDM: Hierarchical Bayesian Estimation of the Drift-Diffusion Model in Python.” Frontiers in Neuroinformatics 7. http://doi.org/10.3389/fninf.2013.00014.CrossrefGoogle Scholar

  • Wilcox, N. T. 2008. Stochastic models for binary discrete choice under risk: a critical primer and econometric comparison. In Risk Aversion in Experiments (Vol. 12, pp. 197–292). Emerald Group Publishing Limited. Accessed 14 July 2015. http://www.emeraldinsight.com/doi/abs/10.1016/S0193-2306%2808%2900004-5

  • Woodford, M. 2014. An Optimizing Neuroeconomic Model of Discrete Choice. National Bureau of Economic Research. Accessed 14 July 2015. http://www.nber.org/papers/w19897

About the article

Published Online: 2015-11-19

Published in Print: 2015-01-01

Citation Information: Journal of Agricultural & Food Industrial Organization, Volume 13, Issue 1, Pages 55–72, ISSN (Online) 1542-0485, ISSN (Print) 2194-5896, DOI: https://doi.org/10.1515/jafio-2015-0016.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Stephanie M. Smith and Ian Krajbich
Psychological Science, 2018, Page 095679761881052
Minou Ghaffari and Susann Fiedler
Psychological Science, 2018, Page 095679761879930
Arkady Konovalov and Ian Krajbich
Organizational Research Methods, 2016, Page 109442811664450

Comments (0)

Please log in or register to comment.
Log in