Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Agricultural & Food Industrial Organization

Ed. by Azzam, Azzeddine

CiteScore 2017: 0.76

SCImago Journal Rank (SJR) 2017: 0.325
Source Normalized Impact per Paper (SNIP) 2017: 0.402

See all formats and pricing
More options …

Cognitive Neuroscience Perspectives on Food Decision-Making: A Brief Introduction

Rebecca J. LeppingORCID iD: http://orcid.org/0000-0001-9269-051X / Vlad B. Papa / Laura E. Martin
  • Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
  • Department of Preventive Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-19 | DOI: https://doi.org/10.1515/jafio-2015-0026


Cognitive neuroscience methods have recently been employed to examine the neural underpinnings of food-related decision-making. The emerging field of food decision neuroscience uses cognitive neuroscience tools such as functional magnetic resonance imaging (fMRI) to study how individuals make decisions regarding food intake, purchasing, branding, and advertising. These tools can be employed to inform marketing strategies, advertising, and product differentiation. Results can also be leveraged to aid in the design of food labeling and policy for obesity, advertising to children, and others. While these tools have the promise for advancing agricultural science as well as informing food related policy, there are some potential pitfalls when applying these techniques to new fields. The goal of this paper is to outline some of the major tools used by cognitive neuroscience – beginning with experimental design and behavioral measures, and then followed by a discussion of some of the neuroimaging tools (fMRI, electroencephalography and event-related potentials [EEG/ERP], and magnetoencephalography [MEG]) – and to highlight how those tools have been used to understand food decision-making.

Keywords: food decision-making; choice; cognitive neuroscience; fMRI; EEG


  • Ariely, D., and G. S. Berns. 2010. “Neuromarketing: The Hope and Hype of Neuroimaging in Business.” Nature Reviews. Neuroscience 11 (4):284–92. doi: 10.1038/nrn2795.CrossrefGoogle Scholar

  • Banich, M. T., and R. J. Compton. 2011. Cognitive Neuroscience, 3rd edn. Belmont, CA: Wadsworth, Cengage Learning.Google Scholar

  • Batterink, L., S. Yokum, and E. Stice. 2010. “Body Mass Correlates Inversely with Inhibitory Control in Response to Food Among Adolescent Girls: An fMRI Study.” NeuroImage 52 (4):1696–703. doi: 10.1016/j.neuroimage.2010.05.059.CrossrefGoogle Scholar

  • Bhaumik, D. K., A. Roy, N. A. Lazar, K. Kapur, S. Aryal, J. A. Sweeney, D. Patterson, and R. D. Gibbons. 2009. “Hypothesis Testing, Power and Sample Size Determination for Between Group Comparisons in fMRI Experiments.” Statistical Methodology 6 (2):133–46. doi: 10.1016/j.stamet.2008.05.003.CrossrefGoogle Scholar

  • Bialkova, S., K. G. Grunert, H. J. Juhl, G. Wasowicz-Kirylo, M. Stysko-Kunkowska, and H. C. van Trijp. 2014. “Attention Mediates the Effect of Nutrition Label Information on Consumers’ Choice. Evidence From a Choice Experiment Involving Eye-Tracking.” Appetite 76:66–75. doi: 10.1016/j.appet.2013.11.021.CrossrefGoogle Scholar

  • Brooks, K., and J. L. Lusk. 2010. “Stated and Revealed Preferences for Organic and Cloned Milk: Combining Choice Experiment and Scanner Data.” American Journal of Agricultural Economics 92 (4):1229–41. doi: 10.1093/ajae/aaq054.CrossrefGoogle Scholar

  • Bruce, A. S., J. M. Bruce, W. R. Black, R. J. Lepping, J. M. Henry, J. B. Cherry, L. E. Martin, V. B. Papa, A. M. Davis, W. M. Brooks, et al. 2014. “Branding and a Child’s Brain: An fMRI Study of Neural Responses to Logos.” Social Cognitive and Affective Neuroscience 9 (1):118–22. doi: 10.1093/scan/nss109.CrossrefGoogle Scholar

  • Bruce, A. S., J. M. Bruce, A. R. Ness, R. J. Lepping, S. Malley, L. Hancock, J. Powell, T. M. Patrician, F. J. Breslin, L. E. Martin, et al. 2014. “A Comparison of Functional Brain Changes Associated with Surgical Versus Behavioral Weight Loss.” Obesity (Silver Spring) 22 (2):337–43. doi: 10.1002/oby.20630.CrossrefGoogle Scholar

  • Bruce, A. S., L. M. Holsen, R. J. Chambers, L. E. Martin, W. M. Brooks, J. R. Zarcone, M. G. Butler, and C. R. Savage. 2010. “Obese Children Show Hyperactivation to Food Pictures in Brain Networks Linked to Motivation, Reward and Cognitive Control.” Int J Obes (Lond) 34 (10):1494–500. doi: 10.1038/ijo.2010.84.CrossrefGoogle Scholar

  • Bruce, A. S., R. J. Lepping, J. M. Bruce, J. B. Cherry, L. E. Martin, A. M. Davis, W. M. Brooks, and C. R. Savage. 2013. “Brain Responses to Food Logos in Obese and Healthy Weight Children.” Journal of Pediatrics 162 (4):759–764 e2. doi: 10.1016/j.jpeds.2012.10.003.CrossrefGoogle Scholar

  • Bruce, A. S., S. L. Lim, T. R. Smith, J. B. Cherry, W. R. Black, A. M. Davis, and J. M. Bruce. 2015. “Apples or Candy? Internal and External Influences on Children’s Food Choices.” Appetite 93:31–4. doi: 10.1016/j.appet.2015.04.061.CrossrefGoogle Scholar

  • Bruce, A. S., J. L. Lusk, J. M. Crespi, J. B. C. Cherry, J. M. Bruce, B. R. McFadden, C. R. Savage, W. M. Brooks, and L. E. Martin. 2014. “Consumers’ Neural and Behavioral Responses to Food Technologies and Price.” Journal of Neuroscience Psychology and Economics 7 (3):164–73. doi: 10.1037/npe0000023.CrossrefGoogle Scholar

  • Cabeza, R., and A. Kingstone. 2006. Handbook of Functional Neuroimaging of Cognition, 2nd edn. Cognitive Neuroscience, Cambridge, MA: MIT Press.Google Scholar

  • Chapman, C. D., E. K. Nilsson, V. C. Nilsson, J. Cedernaes, F. H. Rangtell, H. Vogel, S. L. Dickson, J. E. Broman, P. S. Hogenkamp, H. B. Schioth, et al. 2013. “Acute Sleep Deprivation Increases Food Purchasing in Men.” Obesity (Silver Spring) 21 (12):E555–60. doi: 10.1002/oby.20579.CrossrefGoogle Scholar

  • Cherry, J. B., J. M. Bruce, J. L. Lusk, J. M. Crespi, S. L. Lim, and A. S. Bruce. 2015. “Neurofunctional Correlates of Ethical, Food-Related Decision-Making.” PLoS One 10 (4):e0120541. doi: 10.1371/journal.pone.0120541.CrossrefGoogle Scholar

  • Crespi, J. M., J. L. Lusk, J. Bradley, C. Cherry, L. E. Martin, B. R. McFadden, and A. S. Bruce. 2015. “Neural Activations Associated with Decision-Time and Choice in a Milk Labeling Experiment.” American Journal of Agricultural Economics aav049. doi: 10.1093/ajae/aav049.Crossref

  • Culham, J. C. 2006. “Functional Neuroimaging: Experimental Design and Analysis.” In Handbook of Functional Neuroimaging of Cognition, edited by R. Cabeza and A. Kingstone. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar

  • Epstein, L. H., E. Finkelstein, H. Raynor, C. Nederkoorn, K. D. Fletcher, N. Jankowiak, and R. A. Paluch. 2015. “Experimental Analysis of the Effect of Taxes and Subsides on Calories Purchased in an on-Line Supermarket.” Appetite 95:245–51. doi: 10.1016/j.appet.2015.06.020.CrossrefGoogle Scholar

  • Epstein, L. H., J. J. Leddy, J. L. Temple, and M. S. Faith. 2007. “Food Reinforcement and Eating: A Multilevel Analysis.” Psychol Bull 133 (5):884–906. doi: 2007-12463-008, [pii] 10.1037/0033-2909.133.5.884.Google Scholar

  • Ferriday, D., and J. M. Brunstrom. 2011. “‘I Just Can’t Help Myself’: Effects of Food-Cue Exposure in Overweight and Lean Individuals.” International Journal of Obesity (London) 35 (1):142–9. doi: 10.1038/ijo.2010.117.CrossrefGoogle Scholar

  • Frank, S., N. Laharnar, S. Kullmann, R. Veit, C. Canova, Y. L. Hegner, A. Fritsche, and H. Preissl. 2010. “Processing of Food Pictures: Influence of Hunger, Gender and Calorie Content.” Brain Research 1350:159–66. doi: 10.1016/j.brainres.2010.04.030.CrossrefGoogle Scholar

  • Frankish, K., and W. M. Ramsey. 2012. The Cambridge Handbook of Cognitive Science. Cambridge: Cambridge University Press.Google Scholar

  • Frankort, A., A. Roefs, N. Siep, A. Roebroeck, R. Havermans, and A. Jansen. 2012. “Reward Activity in Satiated Overweight Women Is Decreased During Unbiased Viewing but Increased When Imagining Taste: An Event-Related fMRI Study.” International Journal of Obesity (London) 36 (5):627–37. doi: 10.1038/ijo.2011.213.CrossrefGoogle Scholar

  • Frankort, A., A. Roefs, N. Siep, A. Roebroeck, R. Havermans, and A. Jansen. 2014. “The Craving Stops Before You Feel It: Neural Correlates of Chocolate Craving During Cue Exposure with Response Prevention.” Cerebral Cortex 24 (6):1589–600. doi: 10.1093/cercor/bht016.CrossrefGoogle Scholar

  • Gazzaniga, M. S. 2004. The Cognitive Neurosciences, 3rd edn. Cambridge, MA: MIT Press.Google Scholar

  • Gearhardt, A. N., S. Yokum, P. T. Orr, E. Stice, W. R. Corbin, and K. D. Brownell. 2011. “Neural Correlates of Food Addiction.” Archives of General Psychiatry 68 (8):808–16. doi: 10.1001/archgenpsychiatry.2011.32.CrossrefGoogle Scholar

  • Gearhardt, A. N., S. Yokum, E. Stice, J. L. Harris, and K. D. Brownell. 2014. “Relation of Obesity to Neural Activation in Response to Food Commercials.” Social Cognitive and Affective Neuroscience 9 (7):932–8. doi: 10.1093/scan/nst059.CrossrefGoogle Scholar

  • Glimcher, P. W., and M. C. Dorris. 2004. “Neuronal Studies of Decision Making in the Visual-Saccadic System.” In The Cognitive Neurosciences III, edited by M. S. Gazzaniga. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar

  • Glimcher, P. W., and E. Fehr. 2014. Neuroeconomics: Decision Making and the Brain, 2nd edn. Amsterdam, Boston: Elsevier/AP, Academic Press is an imprint of Elsevier.Google Scholar

  • Glimcher, P. W., and A. Rustichini. 2004. “Neuroeconomics: The Consilience of Brain and Decision.” Science 306 (5695):447–52. doi: 10.1126/science.1102566.CrossrefGoogle Scholar

  • Hansen, P. C., M. L. Kringelbach, and R. Salmelin. 2010. MEG: An Introduction to Methods. New York: Oxford University Press.Google Scholar

  • He, Q., L. Xiao, G. Xue, S. Wong, S. L. Ames, B. Xie, and A. Bechara. 2014. “Altered Dynamics Between Neural Systems Sub-Serving Decisions for Unhealthy Food.” Frontier in Neuroscience 8:350. doi: 10.3389/fnins.2014.00350.CrossrefGoogle Scholar

  • Heekeren, H. R., S. Marrett, P. A. Bandettini, and L. G. Ungerleider. 2004. “A General Mechanism for Perceptual Decision-Making in the Human Brain.” Nature 431 (7010):859–62. doi: 10.1038/nature02966.CrossrefGoogle Scholar

  • Helfer, P., and T. R. Shultz. 2014. “The Effects of Nutrition Labeling on Consumer Food Choice: A Psychological Experiment and Computational Model.” Annals of the New York Academy of Sciences 1331:174–85. doi: 10.1111/nyas.12461.CrossrefGoogle Scholar

  • Hill, J. O., K. Berridge, N. M. Avena, H. Ziauddeen, M. Alonso-Alonso, D. B. Allison, N. A. Khan, and M. Kelley. 2014. “Neurocognition: The Food-Brain Connection.” Advances in Nutrition 5 (5):544–6.Google Scholar

  • Hogenkamp, P. S. 2014. “The Effect of Sensory-Nutrient Congruency on Food Intake After Repeated Exposure: Do Texture and/or Energy Density Matter?” Physiology & Behavior 136:86–90. doi: 10.1016/j.physbeh.2014.03.025.CrossrefGoogle Scholar

  • Holsen, L. M., J. R. Zarcone, R. Chambers, M. G. Butler, D. C. Bittel, W. M. Brooks, T. I. Thompson, and C. R. Savage. 2009. “Genetic Subtype Differences in Neural Circuitry of Food Motivation in Prader-Willi Syndrome.” International Journal of Obesity (London) 33 (2):273–83. doi: 10.1038/ijo.2008.255.CrossrefGoogle Scholar

  • Holsen, L. M., J. R. Zarcone, T. I. Thompson, W. M. Brooks, M. F. Anderson, J. S. Ahluwalia, N. L. Nollen, and C. R. Savage. 2005. “Neural Mechanisms Underlying Food Motivation in Children and Adolescents.” NeuroImage 27 (3):669–76. doi: 10.1016/j.neuroimage.2005.04.043.CrossrefGoogle Scholar

  • Huerta, C. I., P. R. Sarkar, T. Q. Duong, A. R. Laird, and P. T. Fox. 2014. “Neural Bases of Food Perception: Coordinate-Based Meta-Analyses of Neuroimaging Studies in Multiple Modalities.” Obesity (Silver Spring) 22 (6):1439–46. doi: 10.1002/oby.20659.CrossrefGoogle Scholar

  • Huettel, S. A., A. W. Song, and G. McCarthy. 2008. Functional Magnetic Resonance Imaging, 2nd edn. Sunderland, MA: Sinauer Associates.Google Scholar

  • Isaacs, E. B. 2013. “Neuroimaging, a New Tool for Investigating the Effects of Early Diet on Cognitive and Brain Development.” Frontier in Human Neuroscience 7:445. doi: 10.3389/fnhum.2013.00445.CrossrefGoogle Scholar

  • Jiang, T., B. Schaal, V. Boulanger, F. Kontar, and R. Soussignan. 2013. “Children’s Reward Responses to Picture- and Odor-Cued Food Stimuli: A Developmental Analysis Between 6 and 11years.” Appetite 67:88–98. doi: 10.1016/j.appet.2013.04.003.CrossrefGoogle Scholar

  • Kober, H., P. Mende-Siedlecki, E. F. Kross, J. Weber, W. Mischel, C. L. Hart, and K. N. Ochsner. 2010. “Prefrontal-Striatal Pathway Underlies Cognitive Regulation of Craving.” Proceedings of the National Academy of Sciences of the United States of America 107 (33):14811–16. doi: 10.1073/pnas.1007779107.CrossrefGoogle Scholar

  • Koenigs, M., and D. Tranel. 2008. “Prefrontal Cortex Damage Abolishes Brand-Cued Changes in Cola Preference.” Social Cognitive and Affective Neuroscience 3 (1):1–6. doi: 10.1093/scan/nsm032.CrossrefGoogle Scholar

  • Lazar, N. A. 2008. The Statistical Analysis of Functional MRI Data, Statistics for Biology and Health. New York: Springer.Google Scholar

  • Lehrer, J. 2006. “Driven to Market.” Nature 443 (7111):502–4. doi: 10.1038/443502a.CrossrefGoogle Scholar

  • Leidy, H. J., H. A. Hoertel, S. M. Douglas, K. A. Higgins, and R. S. Shafer. 2015. “A High-Protein Breakfast Prevents Body Fat Gain, Through Reductions in Daily Intake and Hunger, in ‘Breakfast Skipping’ Adolescents.” Obesity (Silver Spring) doi: 10.1002/oby.21185.Crossref

  • Leidy, H. J., R. J. Lepping, C. R. Savage, and C. T. Harris. 2011. “Neural Responses to Visual Food Stimuli After a Normal Vs. Higher Protein Breakfast in Breakfast-Skipping Teens: A Pilot fMRI Study.” Obesity (Silver Spring) 19 (10):2019–25. doi: 10.1038/oby.2011.108.CrossrefGoogle Scholar

  • Luck, S. J. 2005. An Introduction to the Event-Related Potential Technique, Cognitive Neuroscience. Cambridge, Mass: MIT Press.Google Scholar

  • Lundgren, J. D., T. M. Patrician, F. J. Breslin, L. E. Martin, J. E. Donnelly, and C. R. Savage. 2013. “Evening Hyperphagia and Food Motivation: A Preliminary Study of Neural Mechanisms.” Eating Behaviors 14 (4):447–50. doi: 10.1016/j.eatbeh.2013.08.006.CrossrefGoogle Scholar

  • Lusk, J. L., J. M. Crespi, J. Bradley, C. Cherry, B. R. McFadden, L. E. Martin, and A. S. Bruce. 2015. “An fMRI Investigation of Consumer Choice Regarding Controversial Food Technologies.” Food Quality and Preference 40:209–20. doi: 10.1016/j.foodqual.2014.10.005.CrossrefGoogle Scholar

  • Martin, L. E., L. M. Holsen, R. J. Chambers, A. S. Bruce, W. M. Brooks, J. R. Zarcone, M. G. Butler, and C. R. Savage. 2010. “Neural Mechanisms Associated with Food Motivation in Obese and Healthy Weight Adults.” Obesity (Silver Spring) 18 (2):254–60. doi: 10.1038/oby.2009.220.CrossrefGoogle Scholar

  • Masse, L. C., H. M. Blanck, M. Valente, A. A. Atienza, T. Agurs-Collins, D. Weber, and A. L. Yaroch. 2012. “Association Between Self-Reported Household Practices and Body Mass Index of US Children and Adolescents, 2005.” Preventing Chronic Disease 9:E174. doi: 10.5888/pcd9.110149.CrossrefGoogle Scholar

  • McClure, S. M., J. Li, D. Tomlin, K. S. Cypert, L. M. Montague, and P. R. Montague. 2004. “Neural Correlates of Behavioral Preference for Culturally Familiar Drinks.” Neuron 44 (2):379–87. doi: 10.1016/j.neuron.2004.09.019.CrossrefGoogle Scholar

  • McClure, A. C., S. E. Tanski, D. Gilbert-Diamond, A. M. Adachi-Mejia, Z. Li, Z. Li, and J. D. Sargent. 2013. “Receptivity to Television Fast-Food Restaurant Marketing and Obesity Among U.S. Youth.” American Journal of Preventive Medicine 45 (5):560–8. doi: 10.1016/j.amepre.2013.06.011.CrossrefGoogle Scholar

  • McFadden, B. R., J. L. Lusk, J. M. Crespi, J. B. Cherry, L. E. Martin, R. L. Aupperle, and A. S. Bruce. 2015. “Can Neural Activation in Dorsolateral Prefrontal Cortex Predict Responsiveness to Information? an Application to Egg Production Systems and Campaign Advertising.” PLoS One 10 (5):e0125243. doi: 10.1371/journal.pone.0125243.CrossrefGoogle Scholar

  • Milstein, D. M., and M. C. Dorris. 2011. “The Relationship Between Saccadic Choice and Reaction Times with Manipulations of Target Value.” Frontier in Neuroscience 5:122. doi: 10.3389/fnins.2011.00122.CrossrefGoogle Scholar

  • Montgomery, K. C., and J. Chester. 2009. “Interactive Food and Beverage Marketing: Targeting Adolescents in the Digital Age.” Journal of Adolescent Health 45 (3):S18–29. doi: 10.1016/j.jadohealth.2009.04.006.CrossrefGoogle Scholar

  • Moss, M. 2014. Salt, Sugar, Fat: How the Food Giants Hooked Us, Random House trade paperback edition. New York: Random House Trade Paperbacks.Google Scholar

  • Ness, A., J. Bruce, A. Bruce, R. Aupperle, R. Lepping, L. Martin, L. Hancock, T. Patrician, S. Malley, N. Selim, et al. 2014. “Pre-Surgical Cortical Activation to Food Pictures Is Associated with Weight Loss Following Bariatric Surgery.” Surgery for Obesity and Related Diseases 10 (6):1188–95. doi: 10.1016/j.soard.2014.06.005.CrossrefGoogle Scholar

  • Nijs, I. M., I. H. Franken, and P. Muris. 2008. “Food Cue-Elicited Brain Potentials in Obese and Healthy-Weight Individuals.” Eating Behaviors 9 (4):462–70. doi: 10.1016/j.eatbeh.2008.07.009.CrossrefGoogle Scholar

  • Ochsner, K. N., and S. M. Kosslyn. 2014. The Oxford Handbook of Cognitive Neuroscience, Oxford Library of Psychology. Oxford; New York: Oxford University Press. still image.Google Scholar

  • Paasovaara, R., H. T. Luomala, T. Pohjanheimo, and M. Sandell. 2012. “Understanding Consumers’ Brand-Induced Food Taste Perception: A Comparison of ‘Brand Familiarity’ – and ‘Consumer Value-Brand Symbolism (in)Congruity’ – Accounts.” Journal of Consumer Behaviour 11 (1):11–20. doi: 10.1002/cb.356.CrossrefGoogle Scholar

  • Paulus, M. P., N. Hozack, B. Zauscher, J. E. McDowell, L. Frank, G. G. Brown, and D. L. Braff. 2001. “Prefrontal, Parietal, and Temporal Cortex Networks Underlie Decision-Making in the Presence of Uncertainty.” NeuroImage 13 (1):91–100. doi: 10.1006/nimg.2000.0667.CrossrefGoogle Scholar

  • Philiastides, M. G., and P. Sajda. 2007. “EEG-Informed fMRI Reveals Spatiotemporal Characteristics of Perceptual Decision Making.” Journal of Neuroscience 27 (48):13082–91. doi: 10.1523/JNEUROSCI.3540-07.2007.CrossrefGoogle Scholar

  • Powell, L. M., G. Szczypka, F. J. Chaloupka, and C. L. Braunschweig. 2007. “Nutritional Content of Television Food Advertisements Seen by Children and Adolescents in the United States.” Pediatrics 120 (3):576–83. doi: 10.1542/peds.2006-3595.CrossrefGoogle Scholar

  • Robinson, T. N., D. L. Borzekowski, D. M. Matheson, and H. C. Kraemer. 2007. “Effects of Fast Food Branding on Young Children’s Taste Preferences.” Archives of Pediatrics and Adolescent Medicine 161 (8):792–7. doi: 10.1001/archpedi.161.8.792.CrossrefGoogle Scholar

  • Sawyer-Glover, A. M., and F. G. Shellock. 2000. “Pre-MRI Procedure Screening: Recommendations and Safety Considerations for Biomedical Implants and Devices.” Journal of Magnetic Resonance Imaging 12 (3):92–106.Google Scholar

  • Shadlen, M., and J. I. Gold. 2004. “The Neurophysiology of Decision Making as a Window on Cognition.” In The Cognitive Neurosciences III, edited by M. S. Gazzaniga. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar

  • Shadlen, M. N., and R. Kiani. 2013. “Decision Making as a Window on Cognition.” Neuron 80 (3):791–806. doi: 10.1016/j.neuron.2013.10.047.CrossrefGoogle Scholar

  • Simmons, W. K., K. M. Rapuano, S. J. Kallman, J. E. Ingeholm, B. Miller, S. J. Gotts, J. A. Avery, K. D. Hall, and A. Martin. 2013. “Category-Specific Integration of Homeostatic Signals in Caudal but Not Rostral Human Insula.” Nature Neuroscience 16 (11):1551–2. doi: 10.1038/nn.3535.CrossrefGoogle Scholar

  • Sokunbi, M. O., D. E. Linden, I. Habes, S. Johnston, and N. Ihssen. 2014. “Real-Time fMRI Brain-Computer Interface: Development of a “Motivational Feedback” Subsystem for the Regulation of Visual Cue Reactivity.” Frontier in Behavioral Neuroscience 8:392. doi: 10.3389/fnbeh.2014.00392.CrossrefGoogle Scholar

  • Song, A. W., S. A. Huettel, and G. McCarthy. 2006. “Functional Neuroimaging: Basic Principles of Functional MRI.” In Handbook of Functional Neuroimaging of Cognition, edited by R. Cabeza and A. Kingstone. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar

  • Stice, E., K. Burger, and S. Yokum. 2013. “Caloric Deprivation Increases Responsivity of Attention and Reward Brain Regions to Intake, Anticipated Intake, and Images of Palatable Foods.” NeuroImage 67:322–30. doi: 10.1016/j.neuroimage.2012.11.028.CrossrefGoogle Scholar

  • Stiles, J., and T. L. Jernigan. 2010. “The Basics of Brain Development.” Neuropsychology Review 20 (4):327–48. doi: 10.1007/s11065-010-9148-4.CrossrefGoogle Scholar

  • Svaldi, J., B. Tuschen-Caffier, S. C. Biehl, K. Gschwendtner, I. Wolz, and E. Naumann. 2015. “Effects of Two Cognitive Regulation Strategies on the Processing of Food Cues in High Restrained Eaters. an Event-Related Potential Study.” Appetite 92:269–77. doi: 10.1016/j.appet.2015.05.026.CrossrefGoogle Scholar

  • Szabo-Reed, A. N., F. J. Breslin, A. M. Lynch, T. M. Patrician, L. E. Martin, R. J. Lepping, J. N. Powell, H. W. Yeh, C. A. Befort, D. Sullivan, et al. 2015. “Brain Function Predictors and Outcome of Weight Loss and Weight Loss Maintenance.” Contemporary Clinical Trials 40:218–31. doi: 10.1016/j.cct.2014.12.008.CrossrefGoogle Scholar

  • Tang, D. W., L. K. Fellows, D. M. Small, and A. Dagher. 2012. “Food and Drug Cues Activate Similar Brain Regions: A Meta-Analysis of Functional MRI Studies.” Physiology & Behavior 106 (3):317–24. doi: 10.1016/j.physbeh.2012.03.009.CrossrefGoogle Scholar

  • Teslovich, T., E. K. Freidl, K. Kostro, J. Weigel, J. Y. Davidow, M. C. Riddle, C. Helion, M. Dreyfuss, M. Rosenbaum, B. T. Walsh, et al. 2014. “Probing Behavioral Responses to Food: Development of a Food-Specific Go/No-Go Task.” Psychiatry Research 219 (1):166–70. doi: 10.1016/j.psychres.2014.04.053.CrossrefGoogle Scholar

  • Thomas, A., A. Hammer, G. Beibst, and T. F. Munte. 2013. “An ERP-Study of Brand and No-Name Products.” BMC Neuroscience 14:149. doi: 10.1186/1471-2202-14-149.CrossrefGoogle Scholar

  • Toepel, U., J. F. Knebel, J. Hudry, J. le Coutre, and M. M. Murray. 2010. “Advantageous Object Recognition for High-Fat Food Images.” In Fat Detection: Taste, Texture, and Post Ingestive Effects, edited by J. P. Montmayeur and J. le Coutre. Boca Raton (FL): CRC Press.Google Scholar

  • Van Horn, J. D. 2004. “Cognitive Neuroimaging: History, Developments, and Directions.” In The Cognitive Neurosciences III, edited by M. S. Gazzaniga. Cambridge, MA: Massachusetts Institute of Technology.Google Scholar

  • Veling, H., G. M. van Koningsbruggen, H. Aarts, and W. Stroebe. 2014. “Targeting Impulsive Processes of Eating Behavior via the Internet. Effects on Body Weight.” Appetite 78:102–9. doi: 10.1016/j.appet.2014.03.014.CrossrefGoogle Scholar

  • Ward, J. 2009. Cognitive Neuroscience, 4 vols, Critical concepts in psychology. Hove, East Sussex England; New York: Psychology Press.Google Scholar

  • Ward, J. 2010. The Student’s Guide to Cognitive Neuroscience, 2nd ed. London; New York: Psychology Press.Google Scholar

About the article

Published Online: 2015-11-19

Published in Print: 2015-01-01

Citation Information: Journal of Agricultural & Food Industrial Organization, Volume 13, Issue 1, Pages 5–14, ISSN (Online) 1542-0485, ISSN (Print) 2194-5896, DOI: https://doi.org/10.1515/jafio-2015-0026.

Export Citation

©2015 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in