Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Agricultural & Food Industrial Organization

Ed. by Azzam, Azzeddine

CiteScore 2017: 0.76

SCImago Journal Rank (SJR) 2017: 0.325
Source Normalized Impact per Paper (SNIP) 2017: 0.402

See all formats and pricing
More options …

Price Dependence between Different Beef Cuts and Quality Grades: A Copula Approach at the Retail Level for the U.S. Beef Industry

Dimitrios Panagiotou / Athanassios StavrakoudisORCID iD: http://orcid.org/0000-0001-9344-0889
Published Online: 2015-03-17 | DOI: https://doi.org/10.1515/jafio-2015-0001


The objective of this study is to assess the degree and the structure of price dependence between different cuts of the beef industry in the USA. This is pursued using the statistical tool of copulas. To this end, it utilizes retail monthly data of beef cuts, within and between the quality grades of Choice and Select, over the period 2000–2014. For the Choice quality grade, there was evidence of asymmetric price co-movements between all six pairs of beef cuts under consideration. No evidence of asymmetric price co-movements was found between the three pairs of beef cuts for the Select quality grade. For the pairs of beef cuts formed between the Choice and Select quality grades, the empirical results point to the existence of price asymmetry only for the case of the chuck roast cut.

Keywords: Q11; C13; L66


  • Berg, D. 2009. “Copula Goodness-of-Fit Testing: An Overview and Power Comparison.” The European Journal of Finance 15:675–701.Web of ScienceGoogle Scholar

  • Brechmann, E. C., and U. Schepsmeier. 2013a. “Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine.” Journal of Statistical Software 52:1–27.Google Scholar

  • Brechmann, E. C., and U. Schepsmeier. 2013b. “Modeling Dependence with C-and D-Vine Copulas: The R-Package CDVine.” Journal of Statistical Software 52:1–27.Google Scholar

  • Bureau of Labor Statistics. 2014. “Consumer Price Indices.” Accessed July 7, 2014. http://data.bls.gov/cgi-bin/srgate.

  • Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu. 1995. “A Limited Memory Algorithm for Bound Constrained Optimization.” SIAM Journal on Scientific Computing 16:1190–1208.Google Scholar

  • Chen, X., and Y. Fan. 2006. “Estimation of Copula-Based Semiparametric Time Series Models.” Journal of Econometrics 130:307–335.Google Scholar

  • Choroś, B., R. Ibragimov, and E. Permiakova. 2010. “Copula Estimation.” In Copula Theory and Its Applications, 77–91. Berlin, Heidelberg: Springer.Google Scholar

  • Dißmann, J., E. Brechmann, C. Czado, and D. Kurowicka. 2013. “Selecting and Estimating Regular Vine Copulae and Application to Financial Returns.” Computational Statistics & Data Analysis 59:52–69.Web of ScienceGoogle Scholar

  • Durante, F., and C. Sempi. 2010. “Copula Theory: An Introduction.” In Copula Theory and Its Applications, 3–31. Berlin, Heidelberg: Springer.Google Scholar

  • Emmanouilides, C., P. Fousekis, and V. Grigoriadis. 2013. “Price Dependence in the Principal EU Olive Oil Markets.” Spanish Journal of Agricultural Research 12(1):3–14.Google Scholar

  • Emmanouilides, C. J., and P. Fousekis. 2014. “Vertical Price Dependence Structures: Copula-Based Evidence from the Beef Supply Chain in the USA.” European Review of Agricultural Economics. Published online. doi:.CrossrefGoogle Scholar

  • Gaißer, S., M. Ruppert, and F. Schmid. 2010. “A Multivariate Version of Hoeffding’s Phi-Square.” Journal of Multivariate Analysis 101:2571–86.Web of ScienceGoogle Scholar

  • Genest, C., and W. Huang. 2012. “A Regularized Goodness-of-Fit Test for Copulas.” Journal de la Société Française de Statistique & Revue de Statistique Appliquée 154:64–77.Google Scholar

  • Genest, C., B. Rémillard, and D. Beaudoin. 2009. “Goodness-of-Fit Tests for Copulas: A Review and a Power Study.” Insurance: Mathematics and Economics 44:199–213.Google Scholar

  • Ghalanos, A. 2014. “Rugarch: Univariate GARCH Models.” R Package Version 1.3-4.

  • Goodwin, B., and M. Holt. 1999. “Price Transmission and Asymmetric Adjustment in the Us Beef Sector.” American Journal of Agricultural Economics 81:630–637.Google Scholar

  • Hofert, M., I. Kojadinovic, M. Maechler, and J. Yan. 2014. “Copula: Multivariate Dependence with Copulas.” http://CRAN.R-project.org/package=copula, r package version 0.999-12.

  • Jordanger, L. A., and D. Tjøstheim. 2014. “Model Selection of Copulas: AIC Versus a Cross Validation Copula Information Criterion.” Statistics & Probability Letters 92:249–255.Google Scholar

  • Yan, J. 2007. “Enjoy the Joy of Copulas: With a Package Copula.” Journal of Statistical Software 21:1–21. http://www.jstatsoft.org/v21/i04/.Google Scholar

  • Kojadinovic, I., J. Yan, M. Holmes. 2011. “Fast Large-Sample Goodness-of-Fit Tests for Copulas.” Statistica Sinica 21:841–871.Google Scholar

  • Leick, C., J. Behrends, T. Schmidt, and M. Schilling. 2012. “Impact of Price and Thickness on Consumer Selection of Ribeye, Sirloin, and Top Loin Steaks.” Meat Science 91(1):8–13.Web of ScienceGoogle Scholar

  • Manner, H. 2007. “Estimation and Model Selection of Copulas with an Application to Exchange Rates.” Technical Report. http://arnop.unimaas.nl/show.cgi?fid=9426.

  • Meucci, A. 2011. “A Short, Comprehensive, Practical Guide to Copulas (May 20, 2011).” GARP Risk Professional 22–7. October 2011. Available at SSRN: http://ssrn.com/abstract=1847864 or http://dx.doi.org/10.2139/ssrn.1847864.CrossrefGoogle Scholar

  • Nash, J. C. 2014. “On Best Practice Optimization Methods in R.” Journal of Statistical Software 60(2):1–14. http://www.jstatsoft.org/v60/i02.Google Scholar

  • Nash, J. C., and R. Varadhan. 2011. “Unifying Optimization Algorithms to Aid Software System Users: Optimx for R.” Journal of Statistical Software 43:1–14.Google Scholar

  • Nelsen, R. B. 2007. An Introduction to Copulas. New York, NY: Springer.Google Scholar

  • Patton, A. J. 2012. “A Review of Copula Models for Economic Time Series.” Journal of Multivariate Analysis 110:4–18.Google Scholar

  • Pozo, V. F., T. C. Schroeder, and L. J. Bachmeier. 2013. “Asymmetric Price Transmission in the US Beef Market: New Evidence from New Data.” Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management. St. Louis, MO. Available at: http://www.farmdoc.illinois.edu/nccc134

  • Qiu, F., and B. Goodwin. 2012. “Asymmetric Price Transmission: A Copula Approach.” Annual Meeting, August 12–14, 2012, Seattle, Washington, Agricultural and Applied Economics Association.

  • R Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.

  • Reboredo, J. C. 2012. “Do Food and Oil Prices Co-Move?” Energy Policy 49:456–467.Web of ScienceGoogle Scholar

  • Savu, C., and M. Trede. 2010. “Hierarchies of Archimedean Copulas.” Quantitative Finance 10:295–304.Web of ScienceGoogle Scholar

  • Sklar, A. 1959. “Fonctions de Repartition a N Dimensions et Leurs Marges.” Publicatons de L‘Institut Statistique de L‘Universite de Paris 8:229–31.Google Scholar

  • United States Department of Agriculture. 2014. “Cattle and Beef.” Accessed July 7, 2014. http://www.ers.usda.gov/topics/animal-products/cattle-beef.aspx.

  • United States Department of Agriculture – Agricultural Marketing Service. 1997. “United States Standards for Grades of Carcass Beef.” http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELDEV3002979.

  • United States Department of Agriculture – Economic Research Service. 2014. “Retail Prices for Beef, Pork, Poultry Cuts, Eggs, and Dairy Products.” Accessed July 7, 2014. http://www.ers.usda.gov/data-products/meat-price-spreads.aspx.

About the article

Published Online: 2015-03-17

Published in Print: 2016-01-01

Citation Information: Journal of Agricultural & Food Industrial Organization, Volume 14, Issue 1, Pages 121–131, ISSN (Online) 1542-0485, ISSN (Print) 2194-5896, DOI: https://doi.org/10.1515/jafio-2015-0001.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in