Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris

4 Issues per year


CiteScore 2016: 1.09

SCImago Journal Rank (SJR) 2016: 0.367
Source Normalized Impact per Paper (SNIP) 2016: 0.908

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 8, Issue 4 (Nov 2014)

Issues

Influence of surface reflectivity on reflectorless electronic distance measurement and terrestrial laser scanning

Miriam Zámečníková / Andreas Wieser / Helmut Woschitz
  • Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Camillo Ressl
Published Online: 2014-12-05 | DOI: https://doi.org/10.1515/jag-2014-0016

Abstract

The uncertainty of electronic distance measurement to surfaces rather than to dedicated precisionre flectors (reflectorless EDM) is afected by the entire system comprising instrument, atmosphere and surface. The impact of the latter is significant for applications like geodetic monitoring, high-precision surface modelling or laser scanner self-calibration. Nevertheless, it has not yet received sufficient attention and is not well understood. We have carried out an experimental investigation of the impact of surface reflectivity on the distance measurements of a terrestrial laser scanner. The investigation helps to clarify (i)whether variations of reflectivity cause systematic deviations of reflectorless EDM, and (ii) if so, whether it is possible and worth modelling these deviations. The results show that differences in reflectivity may actually cause systematic deviations of a few mm with diffusely re- flecting surfaces and even more with directionally reflecting ones. Using abivariate quadratic polynomial we were able to approximate these deviations as a function of measured distance and measured signal strength alone. Using this approximation to predict corrections, the deviations of the measurements could be reduced by about 70% in our experiment.We conclude that there is a systematic effect of surface reflectivity (or equivalently received signal strength) on the distance measurement and that it is possible to model and predict this effect. Integration into laser scanner calibration models may be beneficial for high precision applications. The results may apply to a broad range of instruments, not only to the specific laser scanner used herein.

Keywords: Laser scanning; EDM; Signal strength; Calibration; Error modelling

About the article

Received: 2014-08-08

Accepted: 2014-10-03

Published Online: 2014-12-05

Published in Print: 2014-11-01


Citation Information: Journal of Applied Geodesy, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2014-0016.

Export Citation

© 2014 by Walter de Gruyter Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ulrich Stenz, Jens Hartmann, Jens-André Paffenholz, and Ingo Neumann
Sensors, 2017, Volume 17, Number 8, Page 1886

Comments (0)

Please log in or register to comment.
Log in