Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris

CiteScore 2018: 1.61

SCImago Journal Rank (SJR) 2018: 0.532
Source Normalized Impact per Paper (SNIP) 2018: 1.064

See all formats and pricing
More options …
Volume 9, Issue 4


Development, Calibration and Evaluation of a Portable and Direct Georeferenced Laser Scanning System for Kinematic 3D Mapping

Erik Heinz
  • Corresponding author
  • Institute of Geodesy and Geoinformation, University of Bonn, Nußallee 17, 53115 Bonn, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Eling / Markus Wieland / Lasse Klingbeil / Heiner Kuhlmann
Published Online: 2016-01-21 | DOI: https://doi.org/10.1515/jag-2015-0011


In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode.

A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.

Keywords: Kinematic Laser Scanning; Portable System; Direct Georeferencing; Calibration; Variance Component Estimation; Evaluation


  • [1]

    Barber, D., Mills, J. and Smith-Voysey, S., Geometric validation of a ground-based mobile laser scanning system, ISPRS Journal of Photogrammetry and Remote Sensing 63 (2008), 128–141.Web of ScienceGoogle Scholar

  • [2]

    Besl, P. J. and McKay, N. D., A Method for Registration of 3-D Shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992), 239–256.Web of ScienceGoogle Scholar

  • [3]

    Caruso, M. J., Applications of Magnetic Sensors for Low Cost Compass Systems, IEEE Position, Location and Navigation Symposium (2000), 177–184.Google Scholar

  • [4]

    CloudCompare, CloudCompare – 3D Point Cloud and Mesh Processing Software, Open Source Project, 2015, URL: http://www.cloudcompare.org (accessed June 1, 2015).

  • [5]

    Djuricic, A. and Jutzi, B., Supporting UAVs in Low Visibility Conditions by Multiple-Pulse Laser Scanning Devices, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W1 (2013), 93–98.Google Scholar

  • [6]

    Dorndorf, Α., Hartmann, J., Paffenholz, J.-A., Neumann, I. and Hesse, C., Validierung und Kalibrierung eines TLS-basierten Multi-Sensor-Systems, Photogrammetrie Laserscanning Optische 3D-Messtechnik – Beiträge der Oldenburger 3D-Tage 2015 (Hrsg. Luhmann/Müller) (2015), 85–97.Google Scholar

  • [7]

    Eling, C., Klingbeil, L. and Kuhlmann, H., Development of an RTK-GPS system for precise real-time positioning of lightweight UAVs, Ingenieurvermessungskurs 2014, Zürich, Schweiz 2014 (2014), 111–123.Google Scholar

  • [8]

    Eling, C., Klingbeil, L., Wieland, M. and Kuhlmann, H., Direct Georeferencing of Micro Aerial Vehicles – System Design, System Calibration and First Evaluation Tests, Photogrammetrie Fernerkundung Geoinformation (PFG) 2014 (2014), 227–237.Google Scholar

  • [9]

    Eling, C., Zeimetz, P. and Kuhlmann, H., Development of an instantaneous GNSS/MEMS attitude determination system, GPS Solutions 2013 (2013), 129–138.Google Scholar

  • [10]

    Förstner, W., Ein Verfahren zur Schätzung von Varianz- und Kovarianzkomponenten, Allgemeine Vermessungs-Nachrichten (AVN) 86 (1979), 446–453.Google Scholar

  • [11]

    Frei, Ε. Α., Vennegeerts, H. and Omelanowsky, D., Kinematische Scanlösungen von p3d systems, Terrestrisches Laserscanning 2013, DVW Schriftenreihe Band 72 (2013), 107–124.Google Scholar

  • [12]

    Friess, P., Toward a rigorous methodology for airborne laser mapping, Proceedings of the International Calibration and Validation Workshop EURO COW, Castelldefels, Spain (2006).Google Scholar

  • [13]

    Glennie, C., Rigorous 3D error analysis of kinematic scanning LIDAR systems, Journal of Applied Geodesy 1 (2007), 147–157.Google Scholar

  • [14]

    Glennie, C., Brooks, B., Ericksen, T., Hauser, D., Hudnut, K., Foster, J. and Avery, J., Compact Multipurpose Mobile Laser Scanning System – Initial Tests and Results, Remote Sensing 5 (2013), 521–538.Google Scholar

  • [15]

    Gräfe, G., High precision kinematic surveying with laser scanners, Journal of Applied Geodesy 1 (2007), 185–199.Google Scholar

  • [16]

    Gräfe, G, Kinematische Anwendungen von Laserscannern im Straßenraum, Ph.D. thesis, Gottfried Wilhelm Leibniz Universität Hannover, Fakultät für Bauingenieurwesen und Geodäsie, 2007.Google Scholar

  • [17]

    Haala, N., Peter, M., Kremer, J. and Hunter, G., Mobile LIDAR mapping for 3D point cloud collection in urban areas – A performance test, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37 (2008), 1119–1127.Google Scholar

  • [18]

    Heiker, Α., Mutual validation of Earth orientation parameters, geophysical excitation functions and second degree gravity field coefficients, Ph.d. thesis, Gottfried Wilhelm Leibniz Universität Hannover, Fakultät für Bauingenieurwesen und Geodäsie, 2013.Google Scholar

  • [19]

    Hesse, C., Hochauflösende kinematische Objekterfassung mit terrestrischen Laserscannern, Ph.D. thesis, Gottfried Wilhelm Leibniz Universität Hannover, Fakultät für Bauingenieurwesen und Geodäsie, 2007.Google Scholar

  • [20]

    Hokuyo Automatic Co., Ltd., Hokuyo UTM-30LX-EW Specifications, 2012, URL: http://www.hokuyo-aut.jp/02sensor/07scanner/download/products/utm-30lx-ew/ (accessed April 1, 2015).

  • [21]

    Holst, C., Artz, T. and Kuhlmann, H., Biased and unbiased estimates based on laser scans of surfaces with unknown deformations, Journal of Applied Geodesy 8 (2014), 169–184.Google Scholar

  • [22]

    Joeckel, R., Stober, M. and Huep, W., Elektronische Entfernungs- und Richtungsmessung und ihre Integration in aktuelle Positionierungsverfahren (5. Auflage), Wichmann, 2008.Google Scholar

  • [23]

    Kaartinen, H., Hyyppä, J., Kukko, Α., Jaakkola, A. and Hyyppä, H., Benchmarking the Performance of Mobile Laser Scanning Systems Using a Permanent Test Field, Sensors 12 (2012), 12814–12835.Web of ScienceCrossrefGoogle Scholar

  • [24]

    Keller, F. and Sternberg, H., Multi-Sensor Platform for Indoor Mobile Mapping: System Calibration and Using a Total Station for Indoor Applications, Remote Sensing 5 (2013), 5805–5824.Google Scholar

  • [25]

    Kukko, Α., Kaartinen, H., Hyyppä, J. and Chen, Y., Multiplatform Mobile Laser Scanning: Usability and Performance, Sensors 12 (2012), 11712–11733.CrossrefWeb of ScienceGoogle Scholar

  • [26]

    Le Scouarnec, R., Touzé, T., Lacambre, J. B. and Seube, N., A positioning free calibration method for mobile laser scanning applications, Proceedings of the ISPRS Workshop on Laser Scanning, Antalya, Turkey (2013), 157–162.Google Scholar

  • [27]

    Leica Geosystems AG, Leica ScanStation P20, Product Specifications, 2013, URL: http://www.leica-geosystems.com (accessed April 28, 2015).

  • [28]

    Lenzmann, L. and Lenzmann, E., Strenge Auswertung des nichtlinearen Gauß-Helmert-Modells, Allgemeine Vermessungs-Nachrichten (AVN) 111 (2004), 68–73.Google Scholar

  • [29]

    Lindenthal, S. M., Ussyshkin, V. R., Wang, J. G. and Pokorny, M., Airborne LIDAR: A fully-automated self-calibration procedure, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W12 (2011), 73–78.Google Scholar

  • [30]

    Maddern, W., Harrison, A. and Newman, P., Lost in Translation (and Rotation): Rapid Extrinsic Calibration for 2D and 3D LIDARs, IEEE International Conference on Robotics and Automation (ICRA) (2012), 3096–3102.Google Scholar

  • [31]

    Mikhail, E. M. and Ackermann, F. E., Observations and Least Squares, Dun-Donnelley, 1976.Google Scholar

  • [32]

    Neitzel, F., Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation, Journal of Geodesy 84 (2010), 751–762.Web of ScienceCrossrefGoogle Scholar

  • [33]

    Neitzel, F. and Neumann, I., Scanning in Motion – Kinematisches TLS mittels mobiler Plattformen, Terrestrisches Laserscanning 2013, DVW Schriftenreihe Band 72 (2013), 89–106.Google Scholar

  • [34]

    Niemeier, W., Ausgleichungsrechnung – Statistische Auswertemethoden (2. Auflage), de Gruyter, 2008.Google Scholar

  • [35]

    Odijk, D., Traugott, J., Sachs, G, Montenbruck, O. and Tiberius, C., Two Approaches to Precise Kinematic GPS Positioning with Miniaturized L1 Receivers, Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS) (2007), 827–838.Google Scholar

  • [36]

    Paffenholz, J.-Α., Direct geo-referencing of 3D point clouds with 3D positioning sensors, Ph.D. thesis, Gottfried Wilhelm Leibniz Universität Hannover, Fakultät für Bauingenieurwesen und Geodäsie, 2012.Google Scholar

  • [37]

    Rieger, P., Studnicka, N., Pfennigbauer, M. and Zach, G., Boresight alignment method for mobile laser scanning systems, Journal of Applied Geodesy 4 (2010), 13–21.Google Scholar

  • [38]

    Schlichting, Α., Brenner, C. and Schön, S., Bewertung von Inertial/GNSS-Modulen mittels Laserscannern und bekannter Landmarken, Photogrammetrie, Fernerkundung, Geoinformation (PFG) 2014 (2014), 5–15.Google Scholar

  • [39]

    Sheehan, M., Harrison, A. and Newman, P., Self-Calibration for a 3D Laser, The International Journal of Robotics Research (2011).Google Scholar

  • [40]

    Skaloud, J. and Lichti, D., Rigorous approach to bore-sight self-calibration in airborne laser scanning, ISPRS Journal of Photogrammetry and Remote Sensing 61 (2006), 47–59.Web of ScienceGoogle Scholar

  • [41]

    Sternberg, H., Keller, F. and Willemsen, T., Precise indoor mapping as a basis for coarse indoor navigation, Journal of Applied Geodesy 7 (2013), 231–246.Google Scholar

  • [42]

    Strübing, T. and Neumann, I., Positions- und Orientierungsschätzung von LIDAR-Sensoren auf Multisensorplattformen, Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 138 (2013), 210–221.Google Scholar

  • [43]

    Talaya, J., Alamus, R., Bosch, E., Serra, Α., Kornus, W. and Baron, Α., Integration of a terrestrial laser scanner with GPS/IMU orientation sensors, Proceedings of the 20th ISPRS Congress (2004).Google Scholar

  • [44]

    Teixidó, M., Pallejà, T., Font, D., Tresanchez, M., Moreno, J. and Palacín, J., Two-Dimensional Radial Laser Scanning for Circular Marker Detection and External Mobile Robot Tracking, Sensors 12 (2012), 16482–16497.Web of ScienceCrossrefGoogle Scholar

  • [45]

    Vennegeerts, H., Objektraumgestützte kinematische Geo-referenzierung für Mobile-Mapping-Systeme, Ph.D. thesis, Gottfried Wilhelm Leibniz Universität Hannover, Fakultät für Bauingenieurwesen und Geodäsie, 2011.Google Scholar

  • [46]

    Vennegeerts, H., Martin, J., Becker, M. and Kutterer, H., Validation of a kinematic laserscanning system, Journal of Applied Geodesy 2 (2008), 79–84.Google Scholar

  • [47]

    Wolf, H., Ausgleichungsrechnung – Formeln zur praktischen Anwendung, Dümmler, 1975.Google Scholar

  • [48]

    Zeimetz, P., Zur Entwicklung und Bewertung der absoluten GNSS-Antennenkalibrierung im HF-Labor, Ph.D. thesis, Rheinische Friedrich-Wilhlems Universität Bonn, Institut für Geodäsie und Geoinformation, 2010.Google Scholar

About the article

Received: 2015-07-30

Accepted: 2015-10-23

Published Online: 2016-01-21

Published in Print: 2015-12-01

Citation Information: Journal of Applied Geodesy, Volume 9, Issue 4, Pages 227–243, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2015-0011.

Export Citation

© 2015 Walter de Gruyter GmbH, Berlin/Munich/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Markus Hillemann, Martin Weinmann, Markus S. Mueller, and Boris Jutzi
Remote Sensing, 2019, Volume 11, Number 16, Page 1955
Erik Heinz, Markus Mettenleiter, Heiner Kuhlmann, and Christoph Holst
Sensors, 2018, Volume 18, Number 7, Page 2253
J. Dupuis, C. Holst, and H. Kuhlmann
Precision Engineering, 2017, Volume 50, Page 171

Comments (0)

Please log in or register to comment.
Log in