Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris

4 Issues per year


CiteScore 2017: 1.23

SCImago Journal Rank (SJR) 2017: 0.445
Source Normalized Impact per Paper (SNIP) 2017: 1.357

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Robust Spatial Approximation of Laser Scanner Point Clouds by Means of Free-form Curve Approaches in Deformation Analysis

Johannes Bureick / Hamza Alkhatib / Ingo Neumann
Published Online: 2016-03-31 | DOI: https://doi.org/10.1515/jag-2015-0020

Abstract

In many geodetic engineering applications it is necessary to solve the problem of describing a measured data point cloud, measured, e. g. by laser scanner, by means of free-form curves or surfaces, e. g., with B-Splines as basis functions. The state of the art approaches to determine B-Splines yields results which are seriously manipulated by the occurrence of data gaps and outliers.

Optimal and robust B-Spline fitting depend, however, on optimal selection of the knot vector. Hence we combine in our approach Monte-Carlo methods and the location and curvature of the measured data in order to determine the knot vector of the B-Spline in such a way that no oscillating effects at the edges of data gaps occur. We introduce an optimized approach based on computed weights by means of resampling techniques. In order to minimize the effect of outliers, we apply robust M-estimators for the estimation of control points.

The above mentioned approach will be applied to a multi-sensor system based on kinematic terrestrial laserscanning in the field of rail track inspection.

Keywords: Deformation; Free-form Curve; B-Splines; Knot Adjustment; Robust Parameter Estimation; Monte-Carlo Resampling Techniques

References

  • [1]

    Cox, M. G., 1972. The Numerical Evaluation of B -Splines. IMA J Appl Math 10 (2), 134–149. doi:.CrossrefGoogle Scholar

  • [2]

    de Boor, C., 1972. On calculating with B-splines. Journal of Approximation Theory 6 (1), 50–62. doi:.CrossrefGoogle Scholar

  • [3]

    Gálvez, A., Iglesias, A., Avila, A., Otero, C., Arias, R., Manchado, C., 2015. Elitist clonal selection algorithm for optimal choice of free knots in B-spline data fitting. Applied Soft Computing 26, 90–106. doi:.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    Hartung, J., Elpelt, B., Klösener, K.-H., 2009. Statistik: Lehr- und Handbuch der angewandten Statistik, 15th ed. Oldenbourg, München, XXXIII, 1145.Google Scholar

  • [5]

    Huber, P. J., 1981. Robust statistics. Wiley, New York, ix, 308.Google Scholar

  • [6]

    Jupp, D.L., 1978. Approximation to Data by Spline with Free Knots. SIAM Journal on Numerical Analysis 15 (2), 328–343.CrossrefGoogle Scholar

  • [7]

    Koch, K.-R., 2009. Fitting Free-Form Surfaces to Laserscan Data by NURBS. Allgemeine Vermessungs-Nachrichten (AVN) (4), 134–140.Google Scholar

  • [8]

    Lai, J. -Y., Lu, C. -Y., 1996. Reverse Engineering of Composite Sculptured Surfaces. Int J Advanced Manufacturing Technology (12), 180–189.Web of ScienceGoogle Scholar

  • [9]

    Liu, A., Wang, Y., 2004. Hypothesis testing in smoothing spline models. Journal of Statistical Computation and Simulation 74 (8), 581–597. doi:.CrossrefGoogle Scholar

  • [10]

    Park, H., Lee, J. -H., 2007. B-spline curve fitting based on adaptive curve refinement using dominant points. Computer-Aided Design 39 (6), 439–451. doi:.CrossrefWeb of ScienceGoogle Scholar

  • [11]

    Piegl, L., Tiller, W., 1997. The NURBS book, 2nd ed. Springer, Berlin, New York, xiv, 646.Google Scholar

  • [12]

    Rice, J. R., 1969. The Approximation of Function, 2nd ed. Addison-Wesley Publishing Company, Reading, MA.Google Scholar

  • [13]

    Sarfraz, M., Raza, S. A., 2001. Capturing outline of fonts using genetic algorithm and splines, in: Proceedings. IEEE Computer Soc., Los Alamitos, Calif. [et al.], pp. 738–743.Google Scholar

  • [14]

    Schmitt, C., Neuner, H., 2015. Knot estimation on B-Spline curves. Österreichische Zeitschrift für Vermessung & Geoinformation 103 (2 + 3), 188–197.Google Scholar

  • [15]

    Simon, D., 2006. Optimal state estimation: Kalman, H [infinity] and nonlinear approaches. Wiley-Interscience, Hoboken, N. J., xxvi, 526.Google Scholar

  • [16]

    Ülker, E., Arslan, A., 2009. Automatic knot adjustment using an artificial immune system for B-spline curve approximation. Information Sciences 179 (10), 1483–1494. doi:.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    Wicki, F., 1998. Robuste Schätzverfahren für die Parameterschätzung in geodätischen Netzen. Institut für Geodäsie und Photogrammetrie, Eidgenössische Technische Hochschule, Zürich, 185.Google Scholar

  • [18]

    Yoshimoto, F., Moriyama, M., Harada, T., 1999. Automatic knot placement by a genetic algorithm for data fitting with a spline, in: Proceedings of the international conference on shape modeling and applications, pp. 162–169.Google Scholar

  • [19]

    Zhao, X., Zhang, C., Yang, B., Li, P., 2011. Adaptive knot placement using a GMM-based continuous optimization algorithm in B-spline curve approximation. Computer-Aided Design 43 (6), 598–604. doi:.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-11-19

Accepted: 2015-12-06

Published Online: 2016-03-31

Published in Print: 2016-03-01


Citation Information: Journal of Applied Geodesy, Volume 10, Issue 1, Pages 27–35, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2015-0020.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Munich/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xin Zhao, Boris Kargoll, Mohammad Omidalizarandi, Xiangyang Xu, and Hamza Alkhatib
Remote Sensing, 2018, Volume 10, Number 4, Page 634
[2]
Xiangyang Xu, Boris Kargoll, Johannes Bureick, Hao Yang, Hamza Alkhatib, and Ingo Neumann
Composite Structures, 2017
[3]
Xiangyang Xu, Johannes Bureick, Hao Yang, and Ingo Neumann
Composite Structures, 2017
[5]
Xiangyang Xu, Xin Zhao, Hao Yang, and Ingo Neumann
Journal of Sensors, 2017, Volume 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in