Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris


CiteScore 2018: 1.61

SCImago Journal Rank (SJR) 2018: 0.532
Source Normalized Impact per Paper (SNIP) 2018: 1.064

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Challenges and Present Fields of Action at Laser Scanner Based Deformation Analyses

Christoph Holst / Heiner Kuhlmann
Published Online: 2016-03-31 | DOI: https://doi.org/10.1515/jag-2015-0025

Abstract

Due to improved laser scanning technology, laser scanner based deformation analyses are presently widespread. These deformation analyses are no longer based on individual points representing the deformation of an object at selected positions. Instead, they are based on a large number of scan points sampling the whole object. This fact either leads to challenges regarding metrological aspects as well as regarding modeling aspects:

  • Estimating and quantifying spatial correlations between scan points and incorporating them into the deformation analysis

  • Separating the laser scanners’ internal systematic errors from areal deformations

  • Minimizing the bias at areal deformation analyses due to a worse network configuration and limited object knowledge

  • Developing freeform parameterizations to reproduce arbitrary areal deformations of an object by individual parameters

  • Incorporating an extended uncertainty model considering also model errors due to imperfect knowledge and simplification of the sampled object.

  • Only when considering all of these aspects, laser scanner based deformation analyses can benefit from the potential of the areal object sampling. This study aims at naming and reasoning these aspects. Furthermore, it introduces first methodologies and approaches for dealing with them.

Keywords: Terrestrial Laser Scanning; Deformation Analysis; Surface Parameterization; Spatial Correlations; Calibration; Configuration

References

  • [1]

    Alba, M., Fregnese, L., Prandi, F., Scaioni, M., Valgoi, P., (2006). Structural monitoring of a large dam by terrestrial lasre scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 36 (5).Google Scholar

  • [2]

    Buhmann, M. D., (2003). Radial Basis Functions: Theory and Implementations. Cambridge University Press, UK.Google Scholar

  • [3]

    Chrzanowski, A., Frodge, S. L., Avella, S., (1993). The worldwide status of monitoring and analysis of dam deformations. In: Proceedings of 7th International Symposium on Deformation Measurements together with 6th Canadian Symposium on Mining Surveying, Banff, Alberta, pp. 77–88.Google Scholar

  • [4]

    Dupuis, J., Holst, C., Kuhlmann, H., (2016). Laser scanner based growth analysis of plants as a new challenge for deformation monitoring. 3rd Joint International Symposium on Deformation Monitoring, Vienna.Google Scholar

  • [5]

    Eling, D., (2009). Terrestrisches Laserscanning für die Bauwerksüberwachung. PhD thesis, Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, No. 282.Google Scholar

  • [6]

    Gordon, B., (2008). Zur Bestimmung von Messunsicherheiten terrestrischer Laserscanner. PhD thesis, Fachbereich Bauingenieurwesen und Geodäsie der Technischen Universität Darmstadt, D 17.Google Scholar

  • [7]

    Gräfe, G., (2007). High precision kinematic surveying with laser scanners. J. Appl. Geodesy, 1 (4), pp. 185–199.Google Scholar

  • [8]

    Harmening, C., Neuner, H., (2014). Raumkontinuierliche Modellierung mit Freiformflächen. In: Schriftenreihe DVW, Band 78: Terrestrisches Laserscanning 2014 (TLS 2014), pp. 105–122, Wißner.Google Scholar

  • [9]

    Harmening, C., Neuner, H., (2015). Continuous modelling of point clouds by means of freeform surfaces. Vermessung & Geoinformation 2 + 3 / 2015, pp. 121–129.Google Scholar

  • [10]

    Hesse, C., (2007). Hochauflösende kinematische Objekterfassung mit terrestrischen Laserscannern, PhD thesis, DGK (German Geodetic Commission), C 608.Google Scholar

  • [11]

    Heunecke, O., Kuhlmann, H., Welsch, W., Eichhorn, A., Neuner, H., (2013). Auswertung geodätischer Überwachungsmessungen. In: Möser, Müller, Schlemmer (Eds.): Handbuch Ingenieurgeodäsie, 2nd edition, Wichmann, Heidelberg.Google Scholar

  • [12]

    Holst, C., (2015). Analyse der Konfiguration bei der Approximation ungleichmäßig abgetasteter Oberflächen auf Basis von Nivellements und terrestrischen Laserscans. PhD thesis, Universitäts- und Landesbibliothek Bonn.Google Scholar

  • [13]

    Holst, C., Artz, T., Kuhlmann, H., (2014). Biased and unbiased estimates based on laser scans of surfaces with unknown deformations. J. Appl. Geodesy, 8 (3), pp. 169–183.Google Scholar

  • [14]

    Holst, C., Kuhlmann, H., (2014). Aiming at self-calibration of terrestrial laser scanners using only one single object and one single scan. J. Appl. Geodesy 8 (4), pp. 295–310.Google Scholar

  • [15]

    Holst, C., Nothnagel, A., Blome, M., Becker, P., Eichborn, M., Kuhlmann, H., (2015). Improved area-based deformatoin analysis of a radio telescope’s main reflector based on terrestrial laser scanning. J. Appl. Geodesy 9 (1), pp. 1–13.Google Scholar

  • [16]

    Holst, C., Tegelbeckers, J., Kuhlmann, H., (2014). Erkennung und Erklärung von systematischen Effekten beim TLS, In: Schriftenreihe DVW, Band 78, „Terrestrisches Laserscanning 2014 (TLS 2014)“, pp. 51–68, Wißner.Google Scholar

  • [17]

    Ioannidis, C., Valani, A., Georgopoulos, A., Tsiligiris, E., (2006). 3D model generation for deformation analysis using laser scanning data of a cooling tower. In: 3rd IAG / 12th FIG Symposium, Baden, Germany.Google Scholar

  • [18]

    Koch, K. R., Kuhlmann, H., (2009). The impact of correcting measurements of laserscanners on the uncertainty of derived results. Zfv 1, pp. 38–44.Google Scholar

  • [19]

    Koch, K. R., Kuhlmann, H., Schuh, W. D., (2010). Approximating covariance matrices estimated in multivariate models by estimating auto- and cross-covariances. J. Geod. 84, pp. 383–397.Google Scholar

  • [20]

    Kuhlmann, H., (2003). Kalman-filtering with coloured measurement noise for deformation analysis. In: Proceedings, 11th FIG Symposium on Deformation Measurements Santorini, Greece.Google Scholar

  • [21]

    Kuhlmann, H., Holst, C., (2016). Flächenhafte Abtastung mit Laserscanning. In: Handbuch Geodäsie, Band Ingenieurgeodäsie, Springer, about to appear.Google Scholar

  • [22]

    Kuhlmann, H., Schwieger, V., Wieser, A., Niemeier, W., (2014). Engineering Geodesy – Definition and core competencies. J. Appl. Geodesy, 4, pp. 237–334.Google Scholar

  • [23]

    Kutterer, H., (1994). Intervallmathematische Behandlung endlicher Unschärfen linearer Ausgleichungsmodelle. PhD thesis, DGK (German Geodetic Commission), C 423.Google Scholar

  • [24]

    Kutterer, H., (2002). Zum Umgang mit Ungewissheit in der Geodäsie – Bausteine für eine neue Fehlertheorie -, Habilitation, DGK (German Geodetic Commission), C 553.Google Scholar

  • [25]

    Lichti, D., Chow, J., Lahamy, H., (2011). Parameter de-correlation and model-identification in hybrid-style terrestrial laser scanner self-calibration. ISPRS J. Photogramm. 66 (3), pp. 317–326.CrossrefWeb of ScienceGoogle Scholar

  • [26]

    Mikhail, E. M., Ackermann, F., (1976). Observations and least squares. Dun-Donelly, New York, USA.Google Scholar

  • [27]

    Moritz, H., (1978). Least-squares collocation. Reviews of Geophysics, 16 (3), pp. 421–430.Google Scholar

  • [28]

    Neumann, I., (2009). Zur Modellierung eines erweiterten Unsicherheitshaushaltes in Parameterschätzung und Hypothesentests. PhD thesis, DGK (German Geodetic Commission), C 634.Google Scholar

  • [29]

    Ohlmann-Lauber, J., Schäfer, T., (2011). Ansätze zur Ableitung von Deformationen aus TLS-Daten. In: Schriftenreihe DVW, Band 66, Terrestrisches Laserscanning – TLS 2011 mit TLS-Challenge, pp. 161–180, Wißner.Google Scholar

  • [30]

    Piegl, L., Tiller, W., (1997). The NURBS Book. Springer.Google Scholar

  • [31]

    Reshetyuk, Y., (2006). Calibration of terrestrial laser scanners Callidus 1.1, Leica HDS 3000 and Leica HDS 2500. Survey Review, 38 (302), pp. 703–713.Google Scholar

  • [32]

    Rietdorf, A., (2005). Automatisierte Auswertung und Kalibrierung von scannenden Messsystemen mit tachymetrischem Messprinzip. PhD thesis, DGK (German Geodetic Commission), C 582.Google Scholar

  • [33]

    Sarti, P., Vittuari, L., Abbondanza, C, (2009). Laser Scanner and Terrestrial Surveying Applied to Gravitational Deformation Monitoring of Large VLBI Telescopes’ Primary Reflector, J. Surv. Eng., 139 (4), pp. 136–148.Web of ScienceGoogle Scholar

  • [34]

    Schön, S., (2003). Analyse und Optimierung geodätischer Messanordnungen unter besonderer Berücksichtigung des Intervallansatzes. PhD thesis, DGK (German Geodetic Commission), C 567.Google Scholar

  • [35]

    Soudarissanane, S., Lindenbergh, R., Menenti, M., Teunissen, P., (2011). Scanning geometry: influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm., 66, pp. 389–399.Web of ScienceCrossrefGoogle Scholar

  • [36]

    Walser, B., Gordon, B., (2013). Der Laserscanner, eine Black-Box?. In: Schriftenreihe DVW, Band 72, Terrestrisches Laserscanning 2013 (TLS 2013), pp. 149–164, Wißner.Google Scholar

  • [37]

    Wang, J., (2013). Towards deformation monitoring with terrestrial laser scanning based on external calibration and feature matching methods. PhD thesis, Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, No. 308.Google Scholar

  • [38]

    Zámečniková, M., Neuner, H., Pegritz, S., Sonnleitner, R., (2015). Investigation on the influence of the incidence angle on the reflectorless distance measurement of a terrestrial laser scanner. Vermessung & Geoinformation, 2 + 3 / 2015, pp. 208–218.Google Scholar

  • [39]

    Zogg, H., (2008) Investigations of high precision terrestrial laser scanning with emphasis on the development of a robust close-range 3D-laser scanning system. PhD thesis, Institut für Geodäsie und Photogrammetrie an der Eidgenössischen Technischen Hochschule Zürich, Mitteilungen Nr. 98.Google Scholar

About the article

Received: 2015-11-20

Accepted: 2015-12-06

Published Online: 2016-03-31

Published in Print: 2016-03-01


Citation Information: Journal of Applied Geodesy, Volume 10, Issue 1, Pages 17–25, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2015-0025.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Munich/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Berit Schmitz, Christoph Holst, Tomislav Medic, Derek Lichti, and Heiner Kuhlmann
Sensors, 2019, Volume 19, Number 6, Page 1466
[2]
Christoph Holst, Axel Nothnagel, Rüdiger Haas, and Heiner Kuhlmann
ISPRS Journal of Photogrammetry and Remote Sensing, 2019, Volume 149, Page 67
[3]
Vladimir Badenko, Dmitry Volgin, Sergey Lytkin, A. Borodinecs, V. Sergeev, and N. Vatin
MATEC Web of Conferences, 2018, Volume 245, Page 01002
[4]
Ashif Sikandar Iquebal, Zimo Wang, Woo-Hyun Ko, Zhujiang Wang, P R Kumar, Arun Srinivasa, and Satish T S Bukkapatnam
Procedia Manufacturing, 2018, Volume 26, Page 1296
[5]
Xiaolu Li, Yunye Li, Xinhao Xie, and Lijun Xu
Optics Express, 2018, Volume 26, Number 11, Page 14444
[6]
Christoph Holst, David Schunck, Axel Nothnagel, Rüdiger Haas, Lars Wennerbäck, Henrik Olofsson, Roger Hammargren, and Heiner Kuhlmann
Sensors, 2017, Volume 17, Number 8, Page 1833
[7]
Ville Lehtola, Harri Kaartinen, Andreas Nüchter, Risto Kaijaluoto, Antero Kukko, Paula Litkey, Eija Honkavaara, Tomi Rosnell, Matti Vaaja, Juho-Pekka Virtanen, Matti Kurkela, Aimad El Issaoui, Lingli Zhu, Anttoni Jaakkola, and Juha Hyyppä
Remote Sensing, 2017, Volume 9, Number 8, Page 796
[9]
Ján Erdélyi, Alojz Kopáčik, Imrich Lipták, and Peter Kyrinovič
Applied Geomatics, 2017, Volume 9, Number 2, Page 105
[10]
Hasan Abdulhussein Jaafar, Xiaolin Meng, and Andrew Sowter
Survey Review, 2017, Page 1

Comments (0)

Please log in or register to comment.
Log in