Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris


CiteScore 2017: 1.23

SCImago Journal Rank (SJR) 2017: 0.445
Source Normalized Impact per Paper (SNIP) 2017: 1.357

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Potential of GPS Common Clock Single-differences for Deformation Monitoring

Steffen Schön
  • Corresponding author
  • Institut für Erdmessung, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hue Kiem Pham / Tobias Kersten / Julia Leute / Andreas Bauch
Published Online: 2016-03-31 | DOI: https://doi.org/10.1515/jag-2015-0029

Abstract

Global satellite navigation systems (GNSS) are a standard measurement device for deformation monitoring. In many applications, double-differences are used to reduce distance dependent systematic effects, as well as to eliminate the receiver and satellites clock errors. However, due to the navigation principle of one way ranging used in GPS, the geometry of the subsequent adjustment is weakened. As a result, the height component is generally determined three times less precisely than the horizontal coordinates. In addition, large correlations between the height and elevation dependent effects exist such as tropospheric refraction, mismodelled phase center variations, or multipath which restricts the attainable accuracy. However, for a kinematic analysis, i. e. for estimating high rate coordinate time series, the situation can be significantly improved if a common clock is connected to different GNSS receivers in a network or on a baseline. Consequently, between-station single-differences are sufficient to solve for the baseline coordinates. The positioning geometry is significantly improved which is reflected by a reduction of the standard deviation of kinematic heights by about a factor 3 underlining the benefits of this new approach. Real data from baselines at the Physikalisch-Technische Bundesanstalt campus at Braunschweig where receivers are connected over 290 m via an optical fiber link to a common clock was analysed.

Keywords: GPS; Monitoring; Clock Modeling; Common Clock; EMRP JRP SIB60

References

  • [1]

    Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., D’Anastasio, E., D’Agostino, N., Giuliani, R., Mattone, M., (2011). Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event, J.Geophys. Res., 116, B02305.Web of ScienceGoogle Scholar

  • [2]

    Baarda, W., (1968). A Testing Procedure for Use in Geodetic Networks. Neth. Geod. Comm. Publ. on Geodesy, new series, Vol. 2, No. 5, Delft.Google Scholar

  • [3]

    Bischof, C. and Schön, S., (2013). Performance Evaluation of Different High-Rate GPS Receivers under Various Dynamic Stress Scenarios, Proceedings of the European Navigation Conference (ENC) 2013, April 23.–25., Vienna, Austria.Google Scholar

  • [4]

    Brown, A. and Sturza, M., (1990). The Effect of Geometry on Integrity Monitoring Performance. Presented at the Institute of Navigation Annual Meeting, June 1990.Google Scholar

  • [5]

    Brückl, E., Brunner, F. K., Lang. E, Mertl, S., Müller, M., Stary, U., (2013). The Gradenbach Observatory—monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides 10:815–829.Web of ScienceCrossrefGoogle Scholar

  • [6]

    Häberling, S., Rothacher, M., Zhang, Y., Clinton, J., Geiger, A., (2015). Assessment of high-rate GPS using a single-axis shake table. Journal of Geodesy 89(7):697–709.Web of ScienceGoogle Scholar

  • [7]

    Kim, D., Langley, R., Bond, J., Chranowski, A., (2003). Local deformation monitoring using GPS in an open pit mine: initial study. GPS Solutions. 7:176–185.Google Scholar

  • [8]

    Krawinkel T., Schön, S., (2015). Benefits of receiver clock modeling in code-based GNSS navigation, GPS Solutions online first. DOI: .CrossrefGoogle Scholar

  • [9]

    Larson, K. M., (2009). GPS seismology, J. Geod., 83(3), 227–233.Web of ScienceGoogle Scholar

  • [10]

    Leute, J., Bauch, A., Krawinkel, T., Schön, S., (2016). Common clock GNSS-baselines at PTB. this conference.Google Scholar

  • [11]

    Li, X., Ge, L., Ambikairajah, E., Rizos, C., Tamura, Y., (2005). Analysis of Seismis Response of a Tall Tower Monitored with an Integrated GPS and Accelerometer System. J. Geospatial Eng. 7(1):30–38.Google Scholar

  • [12]

    Lindlohr, W. and Wells, D., (1985). GPS design using undifferenced carrier beat phase observations manuscripta geodaetica 10: 255–295.Google Scholar

  • [13]

    Lovse, J., Teskey, W., Lachapelle, G., Cannon, E., (1994): Dynamic deformation Monitoring of Tall Structures using GPS Technology, Journal of Surveying Engineering 121(1):35–40.Google Scholar

  • [14]

    Macias-Valadez, D., Santerre, R., Larochelle, S., Landry, R., (2012). Improving vertical GPS precision with a GPS-over-fiber architecture and real-time relative delay calibration. GPS Solutions, 16(4):449–462.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Malet, J.-P., Maquaire, O., Calais, E., (2002). The use of Global Positioning System for the continuous monitoring of landslides. Application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43: 33–54.CrossrefGoogle Scholar

  • [16]

    Moschas, F. and Stiros, S., (2014). PLL bandwidth and noise in 100 Hz GPS measurements. GPS Solutions, 19(2), 173–185.Web of ScienceGoogle Scholar

  • [17]

    Moschas, F. and Stiros, S., (2015). Dynamic Deflections of a Stiff Footbridge Using 100-Hz GNSS and Accelerometer Data. Journal of Surveying Engineering, 04015003.Web of ScienceGoogle Scholar

  • [18]

    Pollinger F. et al. (2015), Metrology for Long Distance Surveying: A Joint Attempt to Improve Traceability of Long Distance Measurements. IAG 150 Years - Proceedings of the 2013 IAG Scientific Assembly, Potsdam, Germany, 1–6 September, 2013, International Association of Geodesy Symposia, Vol. 143, Springer International Publishing Switzerland, doi: .CrossrefGoogle Scholar

  • [19]

    Ray, J. and Senior, K., (2003). IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation. Metrologia, 40(3):270–288.CrossrefGoogle Scholar

  • [20]

    Roberts, G. W., Dodson, A. H., Ashkenazi, V., Brown, C. J., Karuna, R., (1999). Comparison of GPS Measurements and Finite, Proc.ION GPS 1999, Nashville, TN, September 1999, pp. 79–84.Google Scholar

  • [21]

    Rothacher, M. and Beutler, G., (1998). The role of GPS in the study of global change. Physics and Chemistry of The Earth, 23(9–10):1029–1040.Google Scholar

  • [22]

    Santerre, R. and Beutler, G., (1993). A proposed GPS method with multi-antennae and single receiver. Bulletin Géodésique, 67:210–223.Google Scholar

  • [23]

    Schön, S., Wieser, A. und Macheiner, K., (2005). Accurate tropospheric correction for local GPS monitoring networks with large height differences. Proc. ION GNSS 2005, 250–260.Google Scholar

  • [24]

    Teunissen, P., (2000). Testing Theory: an Introduction . Series on Mathematical Geodesy and Positioning, Delft University Press, Delft University of Technology, Delft, The Netherland.Google Scholar

  • [25]

    Wang, K. and Rothacher, M., (2013). Stochastic modeling of high-stability ground clocks in GPS analysis, J. Geod., 87(5), 427–437.Google Scholar

  • [26]

    Weinbach, U. and Schön, S., (2009). Evaluation of the clock stability of geodetic GPS receivers connected to an external oscillator, Proc. ION GNSS 2009, Savannah, GA, USA, 22–25 September 2009, 3317–3328.Google Scholar

  • [27]

    Weinbach, U. and Schön, S., (2011). GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP, Adv. Space Res.,47(2), 229–238.Web of ScienceGoogle Scholar

  • [28]

    Weinbach, U. and Schön, S., (2015). Improved GPS-based co-seismic displacement monitoring using high-precision oscillators. Geophysical Research Letters 42(10):3773–3779, .CrossrefWeb of ScienceGoogle Scholar

  • [29]

    Weinbach, U., (2013). Feasibility and impact of receiver clock modeling in precise GPS data analysis, Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Dissertation Nr. 303.Google Scholar

  • [30]

    Wieser, A., Brunner, F. K., (2002). Analysis of Bridge Deformations using Continuous GPS Measurements In: Kopáčik A. and Kyrinovič P. (Eds.) INGEO 2002, 2nd Conference of Engineering Surveying, Bratislava: 45–52. (2002).Google Scholar

  • [31]

    Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., Yanagidani, T., (2013). High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. Journal of Geodesy 87(4):361–372.Web of ScienceGoogle Scholar

About the article

Received: 2015-11-23

Accepted: 2015-12-06

Published Online: 2016-03-31

Published in Print: 2016-03-01


Citation Information: Journal of Applied Geodesy, Volume 10, Issue 1, Pages 45–52, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2015-0029.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Munich/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Franziska Kube, Christian Bischof, Peter Alpers, Christoph Wallat, and Steffen Schön
GPS Solutions, 2018, Volume 22, Number 2

Comments (0)

Please log in or register to comment.
Log in