Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris

CiteScore 2018: 1.61

SCImago Journal Rank (SJR) 2018: 0.532
Source Normalized Impact per Paper (SNIP) 2018: 1.064

See all formats and pricing
More options …
Volume 11, Issue 1


Geodetic monitoring of subrosion-induced subsidence processes in urban areas

Concept and status report

Tobias Kersten
  • Corresponding author
  • Leibniz Universität Hannover, Institut für Erdmessung, Schneiderberg 50, D-30167 Hannover, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Kobe / Gerald Gabriel / Ludger Timmen / Steffen Schön / Detlef Vogel
Published Online: 2017-02-13 | DOI: https://doi.org/10.1515/jag-2016-0029


The research project SIMULTAN applies an advanced combination of geophysical, geodetic, and modelling techniques to gain a better understanding of the evolution and characteristics of sinkholes. Sinkholes are inherently related to surface deformation and, thus, of increasing societal relevance, especially in dense populated urban areas. One work package of SIMULTAN investigates an integrated approach to monitor sinkhole-related mass translations and surface deformations induced by salt dissolution. Datasets from identical and adjacent points are used for a consistent combination of geodetic and geophysical techniques. Monitoring networks are established in Hamburg and Bad Frankenhausen (Thuringia). Levelling surveys indicate subsidence rates of about 4–5 mm per year in the main subsidence areas of Bad Frankenhausen with a local maximum of 10 mm per year around the leaning church tower.

Here, the concept of combining geodetic and gravimetric techniques to monitor and characterise geological processes on and below the Earth's surface is exemplary discussed for the focus area Bad Frankenhausen. For the different methods (levelling, GNSS, relative/absolute gravimetry) stable network results at identical points are obtained by the first campaigns, i.e., the results are generally in agreement.

Keywords: Co-located Geo-Monitoring; Sinkhole; Absolute and Relative Gravimetry; GNSS; Levelling; Earth's Surface Deformation


  • [1]

    Brunner, F. K., Hartinger, H., and Troyer, L. (1999). GPS signal diffraction model: the stochastic SIGMA-d model. Journal of Geodesy, 73:259–267.Google Scholar

  • [2]

    Camitz, J., Sigmundsson, F., Jahn, C.-H., Völksen, C., and Einarsson, P. (1995). Plate boundary deformation and continuing deflation of the Askja volcano, North Iceland, determined with GPS, 1987–1993. Bulletin of Volcanology, 57:136–145.Google Scholar

  • [3]

    Dach, R., Lutz, S., Walser, P., and Fridez, P., editors (2015). Bernese GNSS Software Version 5.2. University of Bern. User manual of the Bernese GNSS Software, Version 5.2.Google Scholar

  • [4]

    Dahm, T., Heimann, S., and Bialowons, W. (2011). A seismological study of shallow weak micro-earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution. Natural Hazards, 58(3):1111–1134.Google Scholar

  • [5]

    Foulger, G. R., Jahn, C.-H., Seeber, G., Einarsson, P., Julian, B. R., and Heki, K. (1992). Post Rifting Stress Relaxation at the Accretionary Plate Boundary in Iceland Measured Using Global Positioning System (GPS). Nature, 358:488–490.Google Scholar

  • [6]

    Fuhrmann, T., Heck, B., Knöpfler, A., Masson, F., Mayer, M., Ulrich, P., Westerhaus, M., and Zippelt, K. (2012). Recent surface displacements in the Upper Rhine Graben – Preliminary results from geodetic networks. Tectonophysics, 602:300–315.Google Scholar

  • [7]

    Hiller, T., Kaufmann, G., Romanov, D., and Gabrovsek, F. (2012). Formation of large collapse dolines: A three-dimensional numerical perspective. In EGU General Assembly, 2012, April 22–27, Vienna, Austria, page 1604.Google Scholar

  • [8]

    Hirt, C., Schmitz, M., Feldmann-Westendorff, U., Wübbena, G., Jahn, C.-H., and Seeber, G. (2010). Mutual validation of GNSS height measurements and high-precision geometric-astronomical leveling. GPS Solutions, 15(2):149–159.Google Scholar

  • [9]

    Holohan, E. P., Walter, T. R., Schöpfer, M. P., Walsh, J. J., van Wyk de Vries, B., and Troll, V. R. (2013). Origins of oblique-slip faulting during caldera subsidence. Journal of Geophysical Research, 118(4):1778–1794.Google Scholar

  • [10]

    Kaufmann, G., Romanov, D., and Hiller, T. (2010). Modelling three-dimensional karst aquifer evolution using different matrix-flow contributions. Journal of Hydrology, 388(3–4):241–250.Google Scholar

  • [11]

    Kaufmann, G., Romanov, D., and Nielbock, R. (2011). Cave detection using multiple geophysical methods: Unicorn cave, Harz Mountains, Germany. Geophysics, 76(3):71–76.CrossrefGoogle Scholar

  • [12]

    Kersten, T. and Schön, S. (2012). Von der Komponentenkalibrierung zur Systemanalyse: Konsistente Korrekturverfahren von Instrumentenfehlern für Multi-GNSS – Schlussbericht zum BMBF/DLR Vorhaben 50NA0903. Technische Informationsbibliothek Hannover (TIB). http://edok01.tib.uni-hannover.de/edoks/e01fb02/359009840.pdf.Google Scholar

  • [13]

    Krawczyk, C. M., Polom, U., and Buness, H. (2015). Geophysikalische Schlüsselparameter zur Überwachung von Erdfällen – Stand und Ziele der aktiven Seismik. In Gesellschaft, D. G., editor, DGG-Kolloquium Georisiken, Erdfälle, pages 19–29. Special Issue I/2015.Google Scholar

  • [14]

    NAM (2000). Bodemdaling door Aardgaswinning Groningen veld en randvelden in Groningen, Noord Drenthe en het Oosten van Friesland – Status Rapport en Prognose tot het jaar 2050. Unpublished report. Nederlandse Aardolie Maatschappij BV.Google Scholar

  • [15]

    Pringle, J. K., Styles, P., Howell, C. P., Branston, M. W., Furner, R., and Toon, S. M. (2012). Long-term time-lapse microgravity and geotechnical monitoring of relict salt mines, Marston, Cheshire, U.K. Geophysics, 77(6):B287–B294.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    Rajiyowiryono, H. (1999). Groundwater and land subsidence monitoring along the north coastal plain of Java island. CCOP Newsletter, 24(3):19.Google Scholar

  • [17]

    Rao, B. R., Kunysz, W., Fante, R. L., and McDonals, K. (2013). GPS/GNSS Antennas. Artech House Publishers, Norwood, USA.Google Scholar

  • [18]

    Reuther, C., Buurmann, N., Kühn, D., Ohrnberger, M., Dahm, T., and Scherbaum, F. (2007). Erkundung des unterirdischen Raums der Metropolregion Hamburg – Das Projekt HADU. Geotechnik: Organ der Deutschen Gesellschaft für Geotechnik, 29(1):11–20.Google Scholar

  • [19]

    Schmidt, S., Wunderlich, J., Peters, A., and Heinke, O. (2013). Ingenieurgeologische Erkundung des Erdfalls vom 01. Nov. 2010 am Rötbergrain in Schmalkalden und Beschreibung des Erdfallfrühwarnsystems in Schmalkalden. Technical report, Thür. Landesanst. f. Umwelt und Geologie.Google Scholar

  • [20]

    Schmidt, W. (2005). Geological and geotechnical investigation procedures for evaluation of the causes of subsidence damage in Florida. Number 57. Florida Geological Survey, Division of Resource Assessment and Management, Tallahassee, Florida. Special Publication.Google Scholar

  • [21]

    Seeber, G. and Böder, V. (2002). Entwicklung und Erprobung eines Verfahrens zur hochpräzisen Kalibrierung von GPS Antennenaufstellungen – Schlussbericht zum BMBF/DLR Vorhaben 50NA9809/8. Institut für Erdmessung.Google Scholar

  • [22]

    Timmen, L. (2010). Absolute and relative gravimetry. In Xu, G., editor, Sciences of Geodesy – I, pages 1–48. Springer, Berlin/Heidelberg.Google Scholar

  • [23]

    Timmen, L., Engfeldt, A., and Scherneck, H.-G. (2015). Observed secular gravity trend at Onsala station with the FG5 gravimeter from Hannover. Journal of Geodetic Sciences, 5(1):18–25.Google Scholar

  • [24]

    Timmen, L. and Wenzel, H.-G. (1995). Worldwide Synthetic Gravity Tide Parameters. In Sünkel, H. and Marson, I., editors, Gravity and Geoid: Joint Symposium of the International Gravity Commission and the International Geoid Commission, pages 92–101. Springer Berlin Heidelberg, Berlin/Heidelberg.Google Scholar

  • [25]

    Torge, W. and Müller, J. (2012). Geodesy. De Gruyter, Berlin/Boston, 4th edition.Google Scholar

  • [26]

    Wadas, S. H., Polom, U., and Krawczyk, C. M. (2016). High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures – a case study in Bad Frankenhausen, Germany. Solid Earth, 7:1491–1508.Google Scholar

  • [27]

    Waltham, T., Bell, F. G., and Culshaw, M. (2005). Sinkoles and Subsidence, volume Geophysical Sciences. Springer. DOI: .CrossrefGoogle Scholar

  • [28]

    Weinbach, U. and Schön, S. (2011). GNSS receiver clock modeling when using high Precision oscillators and its impact on PPP. ASR, 47(2):229–238. DOI: .CrossrefGoogle Scholar

  • [29]

    Wübbena, G., Menge, F., Schmitz, M., Seeber, G., and Völksen, C. (1997). A New Approach for Field Calibration of Absolute GPS Antenna Phase Center Variations. Navigation, 44(2):247–255.Google Scholar

About the article

Received: 2016-07-01

Accepted: 2016-11-09

Published Online: 2017-02-13

Published in Print: 2017-03-01

Funding Source: Bundesministerium für Bildung und Forschung

Award identifier / Grant number: 03G0843A

Award identifier / Grant number: 03G0843D

This work package of SIMULTAN is funded under the grants 03G0843A and 03G0843D by the Bundesministerium für Bildung und Forschung, based on a resolution by the German Bundestag.

Citation Information: Journal of Applied Geodesy, Volume 11, Issue 1, Pages 21–29, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2016-0029.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Martin Kobe, Gerald Gabriel, Adelheid Weise, and Detlef Vogel
Solid Earth, 2019, Volume 10, Number 3, Page 599
Francisco Gutiérrez, Alfonso Benito-Calvo, Domingo Carbonel, Gloria Desir, Jorge Sevil, Jesús Guerrero, Adrián Martínez-Fernández, Theodoros Karamplaglidis, Ángel García-Arnay, and Ivan Fabregat
Engineering Geology, 2018
Alfonso Benito-Calvo, Francisco Gutiérrez, Adrián Martínez-Fernández, Domingo Carbonel, Theodoros Karampaglidis, Gloria Desir, Jorge Sevil, Jesús Guerrero, Ivan Fabregat, and Ángel García-Arnay
Remote Sensing, 2018, Volume 10, Number 4, Page 571

Comments (0)

Please log in or register to comment.
Log in