Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris


CiteScore 2018: 1.61

SCImago Journal Rank (SJR) 2018: 0.532
Source Normalized Impact per Paper (SNIP) 2018: 1.064

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 11, Issue 3

Issues

Comparison of precise orbit determination methods of zero-difference kinematic, dynamic and reduced-dynamic of GRACE-A satellite using SHORDE software

Kai Li
  • Corresponding author
  • 71139 Shanghai Astronomical Observatory Chinese Academy of Sciences, No. 80, Nandan Road, Xuhui District, Shanghai, China
  • University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xuhua Zhou
  • 71139 Shanghai Astronomical Observatory Chinese Academy of Sciences, No. 80, Nandan Road, Xuhui District, Shanghai, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nannan Guo
  • 71139 Shanghai Astronomical Observatory Chinese Academy of Sciences, No. 80, Nandan Road, Xuhui District, Shanghai, China
  • University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gang Zhao
  • 71139 Shanghai Astronomical Observatory Chinese Academy of Sciences, No. 80, Nandan Road, Xuhui District, Shanghai, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kexin Xu
  • 71139 Shanghai Astronomical Observatory Chinese Academy of Sciences, No. 80, Nandan Road, Xuhui District, Shanghai, China
  • University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Weiwei Lei
Published Online: 2017-08-11 | DOI: https://doi.org/10.1515/jag-2017-0004

Abstract

Zero-difference kinematic, dynamic and reduced-dynamic precise orbit determination (POD) are three methods to obtain the precise orbits of Low Earth Orbit satellites (LEOs) by using the on-board GPS observations. Comparing the differences between those methods have great significance to establish the mathematical model and is usefull for us to select a suitable method to determine the orbit of the satellite. Based on the zero-difference GPS carrier-phase measurements, Shanghai Astronomical Observatory (SHAO) has improved the early version of SHORDE and then developed it as an integrated software system, which can perform the POD of LEOs by using the above three methods. In order to introduce the function of the software, we take the Gravity Recovery And Climate Experiment (GRACE) on-board GPS observations in January 2008 as example, then we compute the corresponding orbits of GRACE by using the SHORDE software. In order to evaluate the accuracy, we compare the orbits with the precise orbits provided by Jet Propulsion Laboratory (JPL). The results show that: (1) If we use the dynamic POD method, and the force models are used to represent the non-conservative forces, the average accuracy of the GRACE orbit is 2.40cm, 3.91cm, 2.34cm and 5.17cm in radial (R), along-track (T), cross-track (N) and 3D directions respectively; If we use the accelerometer observation instead of non-conservative perturbation model, the average accuracy of the orbit is 1.82cm, 2.51cm, 3.48cm and 4.68cm in R, T, N and 3D directions respectively. The result shows that if we use accelerometer observation instead of the non-conservative perturbation model, the accuracy of orbit is better. (2) When we use the reduced-dynamic POD method to get the orbits, the average accuracy of the orbit is 0.80cm, 1.36cm, 2.38cm and 2.87cm in R, T, N and 3D directions respectively. This method is carried out by setting up the pseudo-stochastic pulses to absorb the errors of atmospheric drag and other perturbations. (3) If we use the kinematic POD method, the accuracy of the GRACE orbit is 2.92cm, 2.48cm, 2.76cm and 4.75cm in R, T, N and 3D directions respectively. In conclusion, it can be seen that the POD of GRACE satellite is practicable by using different strategies and methods. The orbit solution is well and stable, they all can obtain the GRACE orbits with centimeter-level precision.

Keywords: GRACE satellite; Kinematic; Dynamic; Reduced-Dynamic; POD; Orbit determination accuracy

References

  • [1]

    Kang, Z. G., Tapley, B., Bettadpur, S., Ries, J., Nagel, P., Pastor, R., Precise orbit determination for the GRACE mission using only GPS data, Journal of Geodesy, 80(2006), 322–331.CrossrefGoogle Scholar

  • [2]

    Jäggi, A., Hugentobler, U., Bock, H., Beutler, G., Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data, Advances in Space Research, 39(2007), 1612–1619.Google Scholar

  • [3]

    Tapley, B. D., Ries, J. C., Davis, G. W., Eanes, R. J., Schutz, B. E., Shum, C. K., Watking, M. M., Marshall, J. A., Nerem, R. S., Putney, B. H., Klosko, S. M., Luthcke, S. B., Pavlis, D., Williamson, R. G., Zelensky, N. P., Precision orbit determination for TOPEX/POSEIDON, Journal of Geophysical Research, 99(1994), 24383–24404.Google Scholar

  • [4]

    Swatschina, P., Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits, Vienna University of Technology, Austria, 2009.Google Scholar

  • [5]

    Guo, J., Zhao, Q. L., Li, M., Hu, Z. G., Centimeter level orbit determination for HY2A using GPS data (in Chinese), Geomatics and Information Science of Wuhan University, 38(2013), 52–55.Google Scholar

  • [6]

    Zhao, Q. L., Liu, J. N., Ge, M. R., Shi, C., Du, R. L., Precise Orbit Determination of GPS and CHAMP Satellites with PANDA Software (in Chinese), Crustal Deformation & Earthquake, 25(2005), 113–116.Google Scholar

  • [7]

    Zhou, X. H., Wang, X. H., Zhao, G., Peng, H. L., Wu, B., The precise orbit determination for HY2A satellite using GPS, DORIS and SLR data (in Chinese), Geomatics and Information Science of Wuhan University, 40(2015), 1000–1005.Google Scholar

  • [8]

    Han, B. M., GPS-based kinematic orbit determination for low earth satellites, Institute of Geodesy and Geophysics, Wuhan, Chinese Academy of Sciences, 2003.Google Scholar

  • [9]

    Ma, Y., Research on key technologies in precise orbit determination for LEO satellites based on PPP combinating of space-borne Multi-GPS data, Institute of Geodesy and Geophysics, Wuhan, Chinese Academy of Sciences, 2014.Google Scholar

  • [10]

    Bock, H., Efficient methods for determining precise orbits of low Earth orbiters using the Global Positioning System, PHD thesis, Astronomical Institute University of Berne, Switzerland, 2003.Google Scholar

  • [11]

    Dach, R., Lutz, S., Walser, P., Fridez, P., Bernese GNSS Software Version 5.2, Astronomical Institute, University of Bern, Switzerland, 2015.Google Scholar

  • [12]

    Michalak, G., König, D., Neumayer, K. H., Dahle, C., Improvement in GPS Orbit Determination at GFZ, Observation of the System Earth from Space – CHAMP, GRACE, GOCE and future missions, Springer, Berlin Heidelberg New York, 2014.Google Scholar

  • [13]

    Webb, F. H., Zumberge, J. F., An introduction to the GIPSY/OASIS-II, JPL Publication, D-11088, Jet Propulsion Laboratory, Pasadena, CA, 1993.Google Scholar

  • [14]

    Švehla, D., Rothacher, M., Kinematic Precise Orbit Determination for Gravity Field Determination. In: Sansò, F. (ed.), A Window on the Future of Geodesy, Springer, Berlin Heidelberg New York, 2005.Google Scholar

  • [15]

    Švehla, D., Rothacher, M., Kinematic and reduced-dynamic precise orbit determination of low earth orbiters, Advances in Geosciences, 1(2003), 47–56.Google Scholar

  • [16]

    Naeimi, M., Flury, J., Global Gravity Field Modeling from Satellite-to-Satellite Tracking Data, Lecture Notes in Earth System Sciences, 2017.Google Scholar

  • [17]

    Jäggi, A., Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using the Global Positioning System, Schweizerische Geodätische Kommission, 2007.Google Scholar

  • [18]

    Li, J. C., Zhang, S. J., Zou, X. C., Jiang, W. P., Precise orbit determination for GRACE with zero-difference kinematic method, Chinese Science Bulletin, 54(2009), 2355–2362.Google Scholar

  • [19]

    Kroes, R., Precise Relative Positioning of Formation Flying Spacecraft Using GPS, PHD thesis, Delfts University of Technology, Delfts, 2006.Google Scholar

  • [20]

    Zhang, S. J., Li, J. C., Zou, X. C., Jin, T. Y., Analysis of zero-difference kinematic POD for GRACE (in Chinese), Geomatics and Information Science of Wuhan University, 35(2010), 679–682.Google Scholar

  • [21]

    Guo N. N., Zhou X. H., Wu B., Rapid precise orbit determination for Haiyang-2A using on-board GPS data (in Chinese), Journal of Astronautics, 36(2015), 797–803.Google Scholar

  • [22]

    Jäggi, A., Beutler, G., Bock, H., Hugentobler, U., Kinematic and highly reduced-dynamic LEO orbit determination for gravity field estimation, Dynamic Planet, Springer, Berlin Heidelberg, 2007.Google Scholar

  • [23]

    Case, K., Kruizinga, G., Wu, S., GRACE Level 1B Data Product User Handbook, JPL Publication, D-22027, Jet Propulsion Laboratory, Pasadena, CA, 2002.Google Scholar

  • [24]

    Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor, J. K., The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research: Solid Earth, 117(B4)(2012).Google Scholar

  • [25]

    Petit, G., Luzum, B., IERS Conventions (2010), IERS Technical Note No. 36, International Earth Rotation and Reference Systems Service, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt, Germany, 2009.Google Scholar

  • [26]

    Lyard, F., Lefevre, F., Letellier, T., Francis, O., Modelling the global ocean tides: modern insights from FES2004, Ocean Dynamics, 56(2006), 394–415.Google Scholar

  • [27]

    Bruinsma, S., The DTM-2013 thermosphere model, Journal of Space Weather & Space Climate, 5(2015).Google Scholar

  • [28]

    Rim, H. J., TOPEX Orbit Determination Using GPS Tracking System, University of Texas at Austin, Austin, 1992.Google Scholar

  • [29]

    Kang, Z. G., Tapley, B. D., Bettadpur, S., Ries, J., Nagel, P., Precise orbit determination for GRACE using accelerometer data, Advances in Space Research, 38(2006), 2131–2136.Google Scholar

  • [30]

    Li, C., Cui, H. Z., Han, C., He, Y. F., Tang, G. S., Precision orbit determination for GRACE based on accelerometer measurements (in Chinese), China Satellite Navigation Conference, 2013.

  • [31]

    Kuang, C. L., Application of acceleration data to precise dynamic orbit determination of earth orbit satellite (in Chinese), Journal of Geodesy and Geodynamics, 29(2009), 88–92.Google Scholar

  • [32]

    Jäggi, A., Hugentobler, U., Beutler, G. Pseudo-stochastic modeling techniques for low Earth orbits, Journal of Geodesy, 80(2005), 47–60.Google Scholar

  • [33]

    Yunck, T. P., Bertiger, W. I., Wu, S. C., Bar-Server, Y. E., Christensen, E. J., Haines, B. J., Lichten, S. M., Muellerschoen, R. J., Vigue, Y., Willis, P., First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon, Geophysical Research Letters, 21(2013), 541–544.Google Scholar

  • [34]

    Wu, S. C., Yunck, T. P., Thornton, C. L., A reduced-dynamic technique for precise orbit determination, The Telecommunications and Data Acquisition Report, 1990, 13–25.Google Scholar

  • [35]

    Peng, D. J., Wu, B., Zero-difference and single-difference precise orbit determination for LEO using GPS, Chinese Science Bulletin, 52(2007), 2024–2030.Google Scholar

About the article

Received: 2017-01-18

Accepted: 2017-05-18

Published Online: 2017-08-11

Published in Print: 2017-09-26


Funding Source: National Natural Science Foundation of China

Award identifier / Grant number: 11403077

This research was supported by the National Natural Science Foundation of China (Grant No. 11403077, 11573053).


Citation Information: Journal of Applied Geodesy, Volume 11, Issue 3, Pages 157–165, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2017-0004.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kai Li, Xuhua Zhou, Wenbin Wang, Yang Gao, Gang Zhao, Enzhe Tao, and Kexin Xu
Sensors, 2018, Volume 18, Number 8, Page 2671

Comments (0)

Please log in or register to comment.
Log in