Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris

4 Issues per year


CiteScore 2017: 1.23

SCImago Journal Rank (SJR) 2017: 0.445
Source Normalized Impact per Paper (SNIP) 2017: 1.357

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 11, Issue 4

Issues

Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations

M. Abrehdary
  • Corresponding author
  • Department of Environment and Life Sciences, Geomatics Section, University of Karlstad, SE-651 77 Karlstad, Sweden
  • Division of Geodesy and Satellite Positioning, 166474 Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L.E. Sjöberg
  • Division of Geodesy and Satellite Positioning, 166474 Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Bagherbandi
  • Division of Geodesy and Satellite Positioning, 166474 Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
  • Department of Industrial Development, IT and Land Management, University of Gävle, SE-801 76 Gävle, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Sampietro
Published Online: 2017-09-14 | DOI: https://doi.org/10.1515/jag-2017-0019

Abstract

We present a combined method for estimating a new global Moho model named KTH15C, containing Moho depth and Moho density contrast (or shortly Moho parameters), from a combination of global models of gravity (GOCO05S), topography (DTM2006) and seismic information (CRUST1.0 and MDN07) to a resolution of 1° × 1° based on a solution of Vening Meinesz-Moritz’ inverse problem of isostasy. This paper also aims modelling of the observation standard errors propagated from the Vening Meinesz-Moritz and CRUST1.0 models in estimating the uncertainty of the final Moho model. The numerical results yield Moho depths ranging from 6.5 to 70.3 km, and the estimated Moho density contrasts ranging from 21 to 650 kg/m3, respectively. Moreover, test computations display that in most areas estimated uncertainties in the parameters are less than 3 km and 50 kg/m3, respectively, but they reach to more significant values under Gulf of Mexico, Chile, Eastern Mediterranean, Timor sea and parts of polar regions. Comparing the Moho depths estimated by KTH15C and those derived by KTH11C, GEMMA2012C, CRUST1.0, KTH14C, CRUST14 and GEMMA1.0 models shows that KTH15C agree fairly well with CRUST1.0 but rather poor with other models. The Moho density contrasts estimated by KTH15C and those of the KTH11C, KTH14C and VMM model agree to 112, 31 and 61 kg/m3 in RMS. The regional numerical studies show that the RMS differences between KTH15C and Moho depths from seismic information yields fits of 2 to 4 km in South and North America, Africa, Europe, Asia, Australia and Antarctica, respectively.

Keywords: Vening Meinesz-Moritz; CRUST1.0; MDN07; Moho depth; Moho density contrast; uncertainty

References

  • [1]

    Abrehdary, M., Sjöberg, L.E., and Bagherbandi, M. 2015. Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. Journal of Earth Science, 26(4), 607–616.CrossrefWeb of ScienceGoogle Scholar

  • [2]

    Amante, C. and Eakins, B.W. 2009. ETOPO1 1 Arc-Minute global relief model: Procedures, data sources and analysis – NOAA technical memorandum NESDIS NGDC-24.Google Scholar

  • [3]

    Bagherbandi M. and Sjöberg L.E., 2012. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors, 200–201, 37–44, doi: .CrossrefWeb of ScienceGoogle Scholar

  • [4]

    Bagherbandi, M., Tenzer, R., and Sjöberg, L.E. 2014. Moho depth uncertainties in the Vening-Meinesz Moritz inverse problem of isostasy. Studia Geophysica et Geodaetica, 58(2), 227–248.Web of ScienceCrossrefGoogle Scholar

  • [5]

    Bassin, C., Laske, G., and Masters, T.G. 2000. The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 81, F897.Google Scholar

  • [6]

    Baranov, A. and Morelli, A, 2013. The Moho depth map of the Antarctica region. Tectonophysics, 609, 299–313.Web of ScienceCrossrefGoogle Scholar

  • [7]

    Baranov, A. and Morelli, A. 2014. The global Moho depth map for continental crust. In EGU General Assembly Conference Abstracts (Vol. 16, p. 16384).Google Scholar

  • [8]

    Carlson, R.L. and Raskin, G.S. 1984. Density of the ocean crust. Nature, 311(5986), 555–558.CrossrefGoogle Scholar

  • [9]

    Čadek, O. and Martinec, Z. 1991. Spherical harmonic expansion of the Earth’s crustal thickness up to degree and order 30. Studia Geophysica et Geodaetica, 35(3), 151–165.CrossrefGoogle Scholar

  • [10]

    Christensen, N. and Mooney, W. 1995. Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research Atmospheres, 100, 9761–9788.CrossrefGoogle Scholar

  • [11]

    Chulick, G. and Mooney, W. 2002. Seismic structure of the crust and uppermost mantle of North America and adjacent ocean basins: A synthesis. Bull. Seismol. Soc. Am., 92, 2478–2492.CrossrefGoogle Scholar

  • [12]

    Chulick, G.S., Detweiler, S., and Mooney, W.D. 2013. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. Journal of South American Earth Sciences, 42, 260–276.CrossrefWeb of ScienceGoogle Scholar

  • [13]

    Eshagh, M. 2015. On the relation between Moho and sub-crustal stress induced by mantle convection. Journal of Geophysics and Engineering, 12(1), 1.Web of ScienceCrossrefGoogle Scholar

  • [14]

    Eshagh, M., Bagherbandi, M., and Sjöberg, L. 2011. A combined global Moho model based on seismic and gravimetric data. Acta Geodaetica et Geophysica Hungarica, 46(1), 25–38.Web of ScienceCrossrefGoogle Scholar

  • [15]

    Grad, M. and Tiira, T. (2009). The Moho depth map of the European Plate. Geophysical Journal International, 176(1): 279–292.Web of ScienceCrossrefGoogle Scholar

  • [16]

    Hamayun, H. 2014. Global Earth Structure Recovery from State-of-the-art Models of the Earth’s Gravity Field and Additional Geophysical Information (Doctoral dissertation, TU Delft, Delft University of Technology).Google Scholar

  • [17]

    Hello, Y., Ogé, A., Sukhovich, A., and Nolet, G., 2011. Modern mermaids: New floats image the deep Earth. Eos, Transactions American Geophysical Union, 92(40), 337–338.CrossrefGoogle Scholar

  • [18]

    Kennett, B.L.N., Salmon, M., and Saygin, E. 2011. AusMoho: the variation of Moho depth in Australia. Geophysical Journal International, 187(2): 946–958.CrossrefWeb of ScienceGoogle Scholar

  • [19]

    Laske, G., Masters, G., Ma, Z. and Pasyanos, M.E., 2013. A New Global Crustal Model at 1×1 Degrees (CRUST1.0), (http://igppweb.ucsd.edu/~gabi/crust1.html).Google Scholar

  • [20]

    Laske, G. and Masters, G. 1997. A global digital map of sediment thickness. Eos Trans. AGU, 78(F483).

  • [21]

    Lebedev, S., Adam, J.M.C., and Meier, T. 2013. Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics, 609, 377–394.CrossrefWeb of ScienceGoogle Scholar

  • [22]

    Lloyd, S., van der Lee, S., Franca, G.S., Assumpcao, M., and Feng, M. 2010. Moho map of South America from receiver functions and surface waves. J. Geophys. Res., 115, B11315.Web of ScienceGoogle Scholar

  • [23]

    Marone, F., Van Der Meijde, M., Van Der Lee, S., and Giardini, D. 2003. Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia–Africa plate boundary region. Geophysical Journal International, 154(2), 499–514.CrossrefGoogle Scholar

  • [24]

    Mayer-Gürr, T., et al. 2015. The combined satellite gravity field model GOCO05s. Presentation at EGU 2015, Vienna, April 2015.Google Scholar

  • [25]

    Meier, U., Curtis, A., and Trampert, J. 2007. Global crustal thickness from neural network inversion of surface wave data. Geophysical Journal International, 169(2): 706–722.Web of ScienceCrossrefGoogle Scholar

  • [26]

    Mooney, W.D. 2007. Crust and Lithospheric Structure – Global Crustal Structure. Treatise on Geophysics, vol. 1: Seismology and Structure of the Earth. (Eds. B. Romanowicz and A. Dziewonski). Elsevier, 361–417.Google Scholar

  • [27]

    Pasyanos, M.E. and Nyblade, A.A. 2007. A top to bottom lithospheric study of Africa and Arabia. Tectonophysics. 444, 27–44.Web of ScienceCrossrefGoogle Scholar

  • [28]

    Reguzzoni, M. and Sampietro, D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. International Journal of Applied Earth Observation and Geoinformation, 35, 31–43.CrossrefWeb of ScienceGoogle Scholar

  • [29]

    Reguzzoni, M., Sampietro, D., and Sansò, F., 2013. Global Moho from the combination of the CRUST2. 0 model and GOCE data. Geophysical Journal International, ggt247.

  • [30]

    Sampietro, D., Reguzzoni, M., and Negretti, M., 2013. The GEMMA Crustal Model: First Validation and Data Distribution. In ESA Special Publication (Vol. 722, p. 30).Google Scholar

  • [31]

    Sjöberg, L.E., 2009. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophys J. Int., 179(3), 1527–1536, doi: .CrossrefWeb of ScienceGoogle Scholar

  • [32]

    Sjöberg, L.E., 2013. On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz–Moritz gravimetric inverse problem. Geophysical Journal International, 193(3), 1277–1282.CrossrefWeb of ScienceGoogle Scholar

  • [33]

    Sjöberg, L.E. and Bagherbandi, M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophysica, 59(3), 502–525.Web of ScienceGoogle Scholar

  • [34]

    Sjöberg, L.E., Bagherbandi, M., and Tenzer, R., 2015. On Gravity Inversion by No-Topography and Rigorous Isostatic Gravity Anomalies. Pure and Applied Geophysics, 1–12.Web of ScienceGoogle Scholar

  • [35]

    Shapiro, N.M. and Ritzwoller, M.H., 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int., 151, 88–105.CrossrefGoogle Scholar

  • [36]

    Suleimanov, A.K., Berzin, R.G., Zamozhnyaya, N.G., and Lipilin, A.V., 2007. Results of integrated geological-geophysical studies in the East European Craton (1EV geophysical transect). In: Models of the Earth’s crust and upper mantle after deep seismic profiling. Proceedings of the international scientific-practical seminar. Rosnedra, VSEGEI, St. Petersburg, VSEGEI Press, 215–223 (in Russian).Google Scholar

  • [37]

    Sutra, E. and Manatschal, G. 2012. How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology, 40, 139–142, doi: .CrossrefWeb of ScienceGoogle Scholar

  • [38]

    Tenzer, R. and Bagherbandi, M. 2012. Reformulation of the Vening Meinesz-Moritz inverse problem of isostasy for isostatic gravity disturbances. International Journal of Geosciences, 2012(3), 918–929, doi:.CrossrefGoogle Scholar

  • [39]

    Tenzer, R. and Chen, W. 2014. Expressions for the global gravimetric Moho modeling in spectral domain. Pure and Applied Geophysics, 171(8), 1877–1896.Web of ScienceCrossrefGoogle Scholar

  • [40]

    Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L.E, Novák, P, and Jin, S. 2015a. Analysis of the refined CRUST1.0 crustal model and its gravity field. Surveys in Geophysics, 36(1), 139–165.CrossrefWeb of ScienceGoogle Scholar

  • [41]

    Tenzer, R., Chen, W., and Jin, S., 2015b. Effect of Upper Mantle Density Structure on Moho Geometry. Pure and Applied Geophysics, 172(6), 1563–1583.Web of ScienceCrossrefGoogle Scholar

  • [42]

    Zolotov, E.E., Kostyuchenko, S.L., and Rakitov, V.A., 1998. Tomographic lithosphere sections in the ICAM VI Proceedings 9 East European Platform. In: Seismological model of the North European lithosphere: Barents Region. (Eds. F.P. Mitrofanov, N.V. Sharov). Apatity: KSC RAS. P. 1, 71–79 (in Russian).Google Scholar

About the article

Received: 2017-05-10

Accepted: 2017-07-24

Published Online: 2017-09-14

Published in Print: 2017-12-01


Funding Source: Swedish National Space Board

Award identifier / Grant number: 116/12

This study was supported by projects no. 116/12 of the Swedish National Space Board (SNSB).


Citation Information: Journal of Applied Geodesy, Volume 11, Issue 4, Pages 231–247, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2017-0019.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in