Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris


CiteScore 2018: 1.61

SCImago Journal Rank (SJR) 2018: 0.532
Source Normalized Impact per Paper (SNIP) 2018: 1.064

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 12, Issue 1

Issues

Investigation of a L1-optimized choke ring ground plane for a low-cost GPS receiver-system

Li Zhang
  • Corresponding author
  • University of Stuttgart, Institute of Engineering Geodesy, Geschwister-Scholl-Str. 24D, D-70174 Stuttgart, Germany, phone: + 49/711-685-84049 | -84040, fax: + 49/711-685-84044
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Volker Schwieger
  • University of Stuttgart, Institute of Engineering Geodesy, Geschwister-Scholl-Str. 24D, D-70174 Stuttgart, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-21 | DOI: https://doi.org/10.1515/jag-2017-0026

Abstract

Besides the geodetic dual-frequency GNSS receivers-systems (receiver and antenna), there are also low-cost single-frequency GPS receiver-systems.

The multipath effect is a limiting factor of accuracy for both geodetic dual-frequency and low-cost single-frequency GPS receivers. And the multipath effect is for the short baselines dominating error (typical for the monitoring in Engineering Geodesy). So accuracy and reliability of GPS measurement for monitoring can be improved by reducing the multipath signal.

In this paper, the self-constructed L1-optimized choke ring ground plane (CR-GP) is applied to reduce the multipath signal. Its design will be described and its performance will be investigated.

The results show that the introduced low-cost single-frequency GPS receiver-system, which contains the Ublox LEA-6T single-frequency GPS receiver and Trimble Bullet III antenna with a self-constructed L1-optimized CR-GP, can reach standard deviations of 3 mm in east, 5 mm in north and 9 mm in height in the test field which has many reflectors. This accuracy is comparable with the geodetic dual-frequency GNSS receiver-system. The improvement of the standard deviation of the measurement using the CR-GP is about 50 % and 35 % compared to the used antenna without shielding and with flat ground plane respectively.

Keywords: Low Cost technology; GPS/GNSS; Monitoring; Multipath effect; choke ring; single frequency receiver; antenna calibration; time series analysis

References

  • [1]

    Axelrad, P.; Comp, C.; MacDoran, P. (1994): Use of Signal-To-Noise Ratio for Multipath Error Correction in GPS Differential Phase Measurements: Methodology and Experimental Results. In: Proceedings of the 7th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, pp. 655–666.Google Scholar

  • [2]

    Choi, K.; Bilich, A.; Larson, K. M.; Axelrad, P. (2004): Modified sidereal filtering: Implications for high-rate GPS positioning. Geophysical Research Letters, doi: .CrossrefGoogle Scholar

  • [3]

    Dilßner, F. (2007): Zum Einfluss des Antennenumfeldes auf die hochpräzise GNSS-Positionsbestimmung. In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 271.

  • [4]

    Filippov, V.; Tatarnicov, D.; Ashjaee, J.; Astakhov, A.; Sutiagin, I. (1998): The First Dual-Depth Dual-Frequency Choke Ring. Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation, Nashville.

  • [5]

    Georgiadou, Y; Kleusberg, A. (1988): On Carrier Signal Multipath Effects in relative GPS Positioning. Manuscripta Geodaetica, 13, pp. 172–199.Google Scholar

  • [6]

    Glabsch, J.; Heunecke, O.; Pink, S.; Schubäck, S. (2010): Nutzung von Low-Cost GNSS Empfängern für ingenieurgeodätische Überwachungsaufgaben. In: GNSS 2010 – Vermessung und Navigation im 21. Jahrhundert. DVW-Schriftenreihe, Band 63, Wißner-Verlag, Augsburg, pp. 113–129.Google Scholar

  • [7]

    Heister, H.; Hollmann, R.; Lang, M. (1997): Multipath-Einfluß bei GPS-Phasenmessungen: Auswirkungen und Konsequenzen für praktische Messungen. AVN, 5, pp. 166–177.Google Scholar

  • [8]

    Irsigler, M. (2008): Multipath Propagation, Mitigation and Monitoring in the Light of Galileo and the Modernized GPS. Dissertation, Bundeswehr University Munich.

  • [9]

    Krantz, E.; Riley, S.; Large, P. (2001): The Design and Performance of the Zephyr Geodetic Antenna. In: Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation, Salt Lake City, pp. 11–14.Google Scholar

  • [10]

    Kunysz, W. (2003): A Three Dimensional Choke Ring Ground Plane Antenna. In: Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, pp. 1883–1888.Google Scholar

  • [11]

    Leica (2016): Leica GPS1200 + Serie Leistungsstarkes GNSS-System. http://www.leica-geosystems.com/downloads123/zz/gps/general/brochures/GPS1200_brochure_de.pdf. Last access: 24.08.2016.Google Scholar

  • [12]

    Leick, A.; Rapoport, L.; Tatarnikov, D. (2015): GPS Satellite Surveying, fourth Edition, Wiley.Google Scholar

  • [13]

    Limpach, P. (2009): Rock glacier monitoring with low-cost GPS: Case study at Dirru glacier, Mattertal. AHORN-Conference, 05.11–06.11.2009, Zurich.

  • [14]

    Schwieger, V.; Gläser, A. (2005): Possibilities of Low Cost GPS Technology for Precise Geodetic Applications. Proceedings on FIG Working Week, Kairo.Google Scholar

  • [15]

    Schwieger, V. (2007): High-Sensitivity GNSS – the Low-Cost Future of GPS?. Proceedings on FIG Working Week, Hongkong.Google Scholar

  • [16]

    Schwieger, V. (2008): High-Sensitivity GPS – an Availability, Reliability and Accuracy Test. Proceedings on FIG Working Week, Stockholm.Google Scholar

  • [17]

    Schwieger, V. (2009): Accurate High-Sensitivity GPS for Short Baselines. FIG Working Week, Eilat.Google Scholar

  • [18]

    Sciré-Scappuzzo, F.; Makarov, S. N. (2009): A Low-Multipath Wideband GPS Antenna with Cutoff or Non-Cutoff Corrugated Ground Plane. IEEE Transactions on Antennas and Propagation, Volume 57, Issue 1.

  • [19]

    Seeber, G.; Menge, F.; Völksen, C.; Wübbena, G.; Schmitz, M. (1997): Precise GPS Positioning Improvements by Reducing Antenna and Site Dependent Effects. Advances in Positioning and Reference Frames, SpringerBerlin Heidelberg, pp. 237–244.Google Scholar

  • [20]

    Takasu, T.; Yasuda, A. (2008): Evaluation of RTK-GPS Performance with Low-cost Single-frequency GPS Receivers. Proceedings of international symposium on GPS/GNSS, pp. 852–861.

  • [21]

    Tatarnikov, D.; Astakhov, A.; Stepanenko, A. (2011): Convex GNSS Reference Station Antenna. In: Proceeding of International Conference on Multimedia Technology (ICMT), Hangzhou, pp. 6288–6291.Google Scholar

  • [22]

    Tatarnikov, D.; Stepanenko, A.; Astakhov, A. (2016): Moderately compact helix antennas with cutoff patterns for millimeter RTK positioning. GPS Solutions, 2016 (20) pp. 587–594.Web of ScienceGoogle Scholar

  • [23]

    TEQC (2014): http://facility.unavco.org/software/teqc/teqc.html. Last Access: 30.02.2014.Google Scholar

  • [24]

    Tranquilla, J. M.; Colpitts, B. G. (1989): GPS Antenna Design Characteristics for High Precision Applications. Proceeding of ASCE Speciality Conference on High Precision Applications, Journal of Surveying Engineering, 115 (1) pp. 2–14.CrossrefGoogle Scholar

  • [25]

    Tranquilla, J. M.; Carr, J. P.; Al-Rizzo, H. M. (1994): Analysis of a choke ring ground plane for multipath control in Global Positioning System (GPS) applications. IEEE Transactions on Antennas and Propagation, 42 (7) pp. 905–911.CrossrefGoogle Scholar

  • [26]

    Trimble Bullet III (2016): Bullet III GPS Antenna. http://trl.trimble.com/docushare/dsweb/Get/Document-8420/Bullet-III_DS.pdf. Last access: 24.08.2015.Google Scholar

  • [27]

    Unavco (2016): https://www.unavco.org. Last access: 24.08.2016.Google Scholar

  • [28]

    University Bonn (2013a): Calibration Protocol Absolute Antenna Calibration for Trimble Bullet III with Ground Plate, SN: 224100575, Bonn, unpublished.

  • [29]

    University Bonn (2013b): Calibration Protocol Absolute Antenna Calibration for Trimble Bullet III with Choke Ring, SN: 224100575, Bonn, unpublished.

  • [30]

    Van Dierendonck, A. J.; Fenton, P.; Ford, T. (1992): Theory and Performance of Narrow Correlator Spacing in a GPS Receiver. In: Navigation: Journal of the Institute of Navigation, 39 (3) pp. 265–283.Google Scholar

  • [31]

    Van Nee, R. D. J. (1995): Multipath and multi-transmitter interference in spread-spectrum communication and navigation systems. Dissertation, Technische Universität Delft.

  • [32]

    Wanninger, L.; May, M. (2000): Carrier Phase Multipath Calibration of GPS Reference Stations. In: Proceedings of ION GPS 2000, Salt Lake City, pp. 132–144.Google Scholar

  • [33]

    Wasoft (2015): http://www.wasoft.de/. Last Access: 23.09.2015.Google Scholar

  • [34]

    Weill, L. R. (1997): Conquering Multipath: The GPS Accuracy Battle. GPS World, 8 (4) pp. 59–66.Google Scholar

  • [35]

    Zeimetz, P. (2012): Zur Entwicklung und Bewertung der absoluten GNSS- Antennenkalibrierung im HF-Labor. Dissertation, University of Bonn, Deutsche Geodätische Kommission, Munich.

  • [36]

    Zhang, L.; Schwieger, V. (2013): Investigation Regarding Different Antennas Combined with Low-Cost Receiver. FIG Working Week 2013, 06.–10.05.2013, Abuja, Nigeria.Google Scholar

  • [37]

    Zhang, L.; Schwieger, V. (2016): Improving the Quality of Low-Cost GPS Receiver Data for Monitoring Using Spatial Correlations. Journal of Applied Geodesy, 10 (2) pp. 119–129.Web of ScienceGoogle Scholar

  • [38]

    Zhang, L. (2016): Qualitätssteigerung von Low-Cost-GPS Zeitreihen für Monitoring Applikationen durch zeitlich-räumliche Korrelationsanalyse, Dissertation, University of Stuttgart. Deutsche Geodätische Kommission Nr. C776, Munich.

About the article

Received: 2017-07-08

Accepted: 2017-11-27

Published Online: 2017-12-21

Published in Print: 2018-01-26


Citation Information: Journal of Applied Geodesy, Volume 12, Issue 1, Pages 55–64, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2017-0026.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in