Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris


CiteScore 2017: 1.23

SCImago Journal Rank (SJR) 2017: 0.445
Source Normalized Impact per Paper (SNIP) 2017: 1.357

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 12, Issue 1

Issues

Accuracy and reliability of gyro measurements at today’s tunnelling projects

Otto Heunecke
  • Corresponding author
  • University of Federal Armed Forces Munich, Institute of Geodesy, Werner-Heisenberg-Weg 39, D 85577 Neubiberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wolfgang Liebl
  • University of Federal Armed Forces Munich, Institute of Geodesy, Werner-Heisenberg-Weg 39, D 85577 Neubiberg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-13 | DOI: https://doi.org/10.1515/jag-2017-0035

Abstract

Gyro theodolites – briefly gyros – allow the orientation transfer from a reference line to another line without need for a connecting geodetic network. They are routinely used for orientation control of networks in tunnelling projects. This is currently the only way to stabilize accuracy and reliability in tunnelling networks and is indispensable with respect of today’s requirements for excavation and breakthrough accuracy. In order to archive a reliable assessment of correctness, the measuring method has to be planned in a way that systematic influences in the determination of an underground directional angle are minimized. For this purpose, the principle of differential measurements is used for an azimuth determination both in terms of time as well as in space. All required corrections and reductions must be considered correctly to obtain the directional angle of interest with a measurement uncertainty less than 1 mgon (=3.3). Some accuracy considerations obtained from own experiences are discussed to state whether the specified standard deviations of the used gyros according to DIN 18723-7 can be confirmed.

Keywords: Azimuth determination; gyro campaign; horizontal refraction; Laplace reduction; measurement uncertainty; pole reduction; northing moment; significance test of variances

References

  • [1]

    Benning, W.: Statistik in Geodäsie, Geoinformation und Bauwesen Wichmann publishing company, Heidelberg. ISBN 3-87907-383-X, 2002.Google Scholar

  • [2]

    DIN 18723-7: Feldverfahren zur Genauigkeitsuntersuchung geodätischer Instrumente – Vermessungskreisel. Beuth publishing company, Berlin, 1990.

  • [3]

    DMT (Ed.): Operator’s guide Gyromat 2000, March 2004.

  • [4]

    DMT (Ed.): User manual Gyromat 5000, August 2014.

  • [5]

    DMT (Ed.): Bedienungsanleitung Gyromat 2000, 1990.

  • [6]

    Grillmayer, E.: Untersuchungen systematischer Fehlereinflüsse bei Messungen mit dem Kreisel DMT Gyromat 2000. Shaker publishing company, Aachen. ISBN 3-8322-1588-3, 2003.Google Scholar

  • [7]

    GUM: Evaluation of measurement data – Guide to the expression of uncertainty in measurements. BIPM (Ed.): JCGM 100, 2008.

  • [8]

    Großmann, W.: Geodätische Rechnungen und Abbildungen in der Landesvermessung. Wittwer publishing company, Stuttgart, 3 Edition, 1976.Google Scholar

  • [9]

    Gruber, F. J., Joeckel, R.: Formelsammlung für das Vermessungswesen. Teubner publishing company, Stuttgart, 13 Edition. ISBN 978-3-8351-0119-0, 2007.Google Scholar

  • [10]

    Heister, H.: Planning gyro measurements with particular reference to systematic error sources. South African Journal of Surveying and Mapping. Vol. 22 Part 4, (1994).Google Scholar

  • [11]

    Heister, H.: Experimentelle Untersuchungen zur Horizontalrefraktion im Tunnelbau. IX. Int. Geodätische Woche Obergurgl. Institutsmitteilungen Institut für Geodäsie der Universität Innsbruck, Issue 17, pp. 79–91, 1997.

  • [12]

    Heister, H.: Zur Messunsicherheit im Vermessungswesen (I) und (II). Geomatik Schweiz, Issue 11, pp. 604–607; Issue 12, pp. 670–673, 2005.Google Scholar

  • [13]

    Heister, H., Liebl, W.: Zur Messunsicherheit von Kreiselmessungen im Gotthard-Basistunnel. Geomatik Schweiz, Issue 12, pp. 586–593, 2010.Google Scholar

  • [14]

    Heunecke, O., Kuhlmann, H., Welsch, W., Eichhorn, A., Neuner, H.: Handbuch Ingenieurgeodäsie, Auswertung geodätischer Überwachungsmessungen. 2. Neu bearbeitete und erweiterte Auflage, Wichmann publishing company, Heidelberg. ISBN 978-3-87907-467-9, 2013.Google Scholar

  • [15]

    Heunecke, O., Linkwitz, K., Schwarz, W.: Geodätische Überwachung von geotechnischen Bauwerken. Grundbautaschenbuch. 7 Edition, Ernst & Sohn publishing company, Berlin. ISBN 978-3-433-01843-9, pp. 559–652, 2008.Google Scholar

  • [16]

    Schödlbauer, A.: Funktionsprinzipien automatisierter Vermessungskreisel. In: Schriftenreihe Studiengang Vermessungswesen der Universität der Bundeswehr München, Issue 38-2: Moderne Verfahren der Landesvermessung, pp. 443–469, 1990.Google Scholar

  • [17]

    Schödlbauer, A.: Rechenformeln und Rechenbeispiel zur Landesvermessung. Teil 3: Punkteigenschaften im System der Gaussschen und der geographischen Koordinaten. Wichmann-Verlag, Karlsruhe, ISBN 3-87907-12-5, 1984.Google Scholar

  • [18]

    Torge, W.: Geodesy. De Gruyter publishing company, Berlin. ISBN 3-11-007232-7, 1991.Google Scholar

  • [19]

    Zanini, M.: Hochpräzise Azimutbestimmung mit Vermessungskreiseln. ETH Zurich, Report No. 209, 1992.

About the article

Received: 2017-09-14

Accepted: 2017-10-25

Published Online: 2017-11-13

Published in Print: 2018-01-26


Citation Information: Journal of Applied Geodesy, Volume 12, Issue 1, Pages 95–107, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2017-0035.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in