Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris


CiteScore 2018: 1.61

SCImago Journal Rank (SJR) 2018: 0.532
Source Normalized Impact per Paper (SNIP) 2018: 1.064

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 13, Issue 3

Issues

Monitoring of extreme land hydrology events in central Poland using GRACE, land surface models and absolute gravity data

Joanna Kuczynska-SiehienORCID iD: https://orcid.org/0000-0001-7444-4753
  • Corresponding author
  • Department of Geomatics Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
  • Faculty of Geodesy, Geospatial and Civil Engineering, 49674 University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, Olsztyn, Poland
  • orcid.org/0000-0001-7444-4753
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dimitrios PiretzidisORCID iD: https://orcid.org/0000-0003-0148-8063 / Michael G. Sideris / Tomasz Olszak
  • Faculty of Geodesy and Cartography, Warsaw University of Technology, Plac Politechniki 1, 00-661, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viktor Szabó
  • Faculty of Geodesy and Cartography, Warsaw University of Technology, Plac Politechniki 1, 00-661, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-20 | DOI: https://doi.org/10.1515/jag-2019-0003

Abstract

This study deals with the analysis of temporal gravity variations in central Poland, deduced from multiple sources and covering the period from 2002–2016. The gravity data sets used comprise GRACE monthly solutions, GLDAS land surface models and absolute gravimeter measurements from the FG-5 gravimeter located in Józefosław, Poland. All data are corrected using standard processing methods in order to include the same gravity effects. After removing the annual and semi-annual components from all data using least-squares spectral analysis and seasonal-trend decomposition, the deseasoned time series are derived and examined for signatures of extreme hydrological events. The signatures of several severe drought and flood conditions affecting Poland and central Europe are identified. A complementary correlation analysis is performed to assess the level of agreement between different data sources. A higher correlation is shown when the analysis is restricted in the 2009–2012 period that includes the 2010 extreme flood and 2011 increased precipitation events, both affecting Poland.

Keywords: Temporal gravity variations; Local hydrology; Flood monitoring; GRACE; GLDAS; Absolute gravimeter

References

  • [1]

    A. Eicker, M. Schumacher, J. Kusche, P. Döll, and H. M. Schmied, “Calibration/Data Assimilation Approach for Integrating GRACE Data into the WaterGAP Global Hydrology Model (WGHM) Using an Ensemble Kalman Filter: First Results,” Surv Geophys, vol. 35, no. 6, pp. 1285–1309, Nov. 2014.CrossrefGoogle Scholar

  • [2]

    M. Khaki et al., “Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model,” Advances in Water Resources, vol. 107, pp. 301–316, Sep. 2017.CrossrefGoogle Scholar

  • [3]

    M. Khaki, I. Hoteit, M. Kuhn, E. Forootan, and J. Awange, “Assessing data assimilation frameworks for using multi-mission satellite products in a hydrological context,” Science of The Total Environment, vol. 647, pp. 1031–1043, Jan. 2019.CrossrefGoogle Scholar

  • [4]

    B. D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber, “The gravity recovery and climate experiment: Mission overview and early results,” Geophys. Res. Lett., vol. 31, no. 9, p. L09607, May 2004.Google Scholar

  • [5]

    M. Rodell, I. Velicogna, and J. S. Famiglietti, “Satellite-based estimates of groundwater depletion in India,” Nature, vol. 460, no. 7258, pp. 999–1002, Aug. 2009.CrossrefGoogle Scholar

  • [6]

    V. M. Tiwari, J. Wahr, and S. Swenson, “Dwindling groundwater resources in northern India, from satellite gravity observations,” Geophys. Res. Lett., vol. 36, no. 18, p. L18401, Sep. 2009.CrossrefGoogle Scholar

  • [7]

    W. Feng, M. Zhong, J.-M. Lemoine, R. Biancale, H.-T. Hsu, and J. Xia, “Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements,” Water Resources Research, vol. 49, no. 4, pp. 2110–2118, Apr. 2013.CrossrefGoogle Scholar

  • [8]

    J. Tang, H. Cheng, and L. Liu, “Assessing the recent droughts in Southwestern China using satellite gravimetry,” Water Resour. Res., vol. 50, no. 4, pp. 3030–3038, Apr. 2014.CrossrefGoogle Scholar

  • [9]

    K. A. Voss, J. S. Famiglietti, M. Lo, C. de Linage, M. Rodell, and S. C. Swenson, “Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region,” Water Resour. Res., vol. 49, no. 2, pp. 904–914, Feb. 2013.CrossrefGoogle Scholar

  • [10]

    G. Joodaki, J. Wahr, and S. Swenson, “Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations,” Water Resour. Res., vol. 50, no. 3, pp. 2679–2692, Mar. 2014.CrossrefGoogle Scholar

  • [11]

    J. S. Famiglietti et al., “Satellites measure recent rates of groundwater depletion in California’s Central Valley,” Geophys. Res. Lett., vol. 38, no. 3, p. L03403, Feb. 2011.Google Scholar

  • [12]

    B. R. Scanlon et al., “Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley,” PNAS, vol. 109, no. 24, pp. 9320–9325, Jun. 2012.CrossrefGoogle Scholar

  • [13]

    B. R. Scanlon, L. Longuevergne, and D. Long, “Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA,” Water Resources Research, vol. 48, no. 4, Apr. 2012.Google Scholar

  • [14]

    O. B. Andersen, S. I. Seneviratne, J. Hinderer, and P. Viterbo, “GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave,” Geophysical Research Letters, vol. 32, no. 18, Sep. 2005.Google Scholar

  • [15]

    F. Seitz, M. Schmidt, and C. K. Shum, “Signals of extreme weather conditions in Central Europe in GRACE 4-D hydrological mass variations,” Earth Planet. Sci. Lett., vol. 268, no. 1, pp. 165–170, Apr. 2008.CrossrefGoogle Scholar

  • [16]

    J. L. Chen, C. R. Wilson, and B. D. Tapley, “The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE,” Water Resources Research, vol. 46, no. 12, Dec. 2010.Google Scholar

  • [17]

    B. D. Vishwakarma, K. Jain, N. Sneeuw, and B. Devaraju, “Mumbai 2005, Bihar 2008 Flood Reflected in Mass Changes Seen by GRACE Satellites,” J Indian Soc Remote Sens, vol. 41, no. 3, pp. 687–695, Sep. 2013.CrossrefGoogle Scholar

  • [18]

    B. T. Gouweleeuw et al., “Daily GRACE gravity field solutions track major flood events in the Ganges–Brahmaputra Delta,” Hydrology and Earth System Sciences, vol. 22, no. 5, pp. 2867–2880, May 2018.CrossrefGoogle Scholar

  • [19]

    M. Rodell et al., “The Global Land Data Assimilation System,” Bull. Amer. Meteor. Soc., vol. 85, no. 3, pp. 381–394, Mar. 2004.CrossrefGoogle Scholar

  • [20]

    T. H. Syed, J. S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson, “Analysis of terrestrial water storage changes from GRACE and GLDAS,” Water Resour. Res., vol. 44, no. 2, p. W02433, Feb. 2008.Google Scholar

  • [21]

    S. Werth, A. Güntner, R. Schmidt, and J. Kusche, “Evaluation of GRACE filter tools from a hydrological perspective,” Geophysical Journal International, vol. 179, no. 3, pp. 1499–1515, Dec. 2009.CrossrefGoogle Scholar

  • [22]

    E. Rangelova, M. G. Sideris, and J. W. Kim, “On the capabilities of the multi-channel singular spectrum method for extracting the main periodic and non-periodic variability from weekly GRACE data,” Journal of Geodynamics, vol. 54, pp. 64–78, Mar. 2012.CrossrefGoogle Scholar

  • [23]

    J. Huang, G. Pavlic, A. Rivera, D. Palombi, and B. Smerdon, “Mapping groundwater storage variations with GRACE: a case study in Alberta, Canada,” Hydrogeol J, vol. 24, no. 7, pp. 1663–1680, Nov. 2016.CrossrefGoogle Scholar

  • [24]

    Z. Rzepecka, M. Birylo, J. Kuczynska-Siehien, J. Nastula, and P. Katarzyna, “Analysis of groundwater level variations and water balance in the area of the Sudety mountains,” Acta Geodynamica et Geomaterialia, vol. 14, no. 187, pp. 307–315, May 2017.Google Scholar

  • [25]

    A. Brzeziński et al., “Geodetic and Geodynamic Studies at Department of Geodesy and Geodetic Astronomy Wut,” Reports on Geodesy and Geoinformatics, vol. 100, no. 1, pp. 165–200, Jun. 2016.CrossrefGoogle Scholar

  • [26]

    J. Neumeyer et al., “Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models,” J Geodesy, vol. 79, no. 10–11, pp. 573–585, Feb. 2006.CrossrefGoogle Scholar

  • [27]

    J. Neumeyer et al., “Analysis of gravity field variations derived from Superconducting Gravimeter recordings, the GRACE satellite and hydrological models at selected European sites,” Earth Planet Sp, vol. 60, no. 5, pp. 505–518, May 2008.CrossrefGoogle Scholar

  • [28]

    D. Crossley, C. de Linage, J. Hinderer, J.-P. Boy, and J. Famiglietti, “A comparison of the gravity field over Central Europe from superconducting gravimeters, GRACE and global hydrological models, using EOF analysis,” Geophys J Int, vol. 189, no. 2, pp. 877–897, May 2012.CrossrefGoogle Scholar

  • [29]

    M. Abe et al., “A comparison of GRACE-derived temporal gravity variations with observations of six European superconducting gravimeters,” Geophys J Int, vol. 191, no. 2, pp. 545–556, Nov. 2012.CrossrefGoogle Scholar

  • [30]

    J. B. Rogowski et al., “Activities of Józefosław Astro-Geodetic Observatory in the last five decades,” Reports on Geodesy, vol. z. 2/89, pp. 31–52, 2010.Google Scholar

  • [31]

    S. Deville, T. Jacob, J. Chéry, and C. Champollion, “On the impact of topography and building mask on time varying gravity due to local hydrology,” Geophys J Int, vol. 192, no. 1, pp. 82–93, Jan. 2013.CrossrefGoogle Scholar

  • [32]

    B. Creutzfeldt, A. Güntner, H. Wziontek, and B. Merz, “Reducing local hydrology from high-precision gravity measurements: a lysimeter-based approach,” Geophys J Int, vol. 183, no. 1, pp. 178–187, Oct. 2010.CrossrefGoogle Scholar

  • [33]

    M. Reich, M. Mikolaj, T. Blume, and A. Güntner, “Reducing gravity data for the influence of water storage variations beneath observatory buildings,” Geophysics, vol. 84, no. 1, pp. EN15–EN31, Oct. 2018.Google Scholar

  • [34]

    B. Creutzfeldt, A. Güntner, T. Klügel, and H. Wziontek, “Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell,” Geophysics, vol. 73, no. 6, pp. WA95–WA104, Nov. 2008.CrossrefGoogle Scholar

  • [35]

    D. Nagy, G. Papp, and J. Benedek, “The gravitational potential and its derivatives for the prism,” Journal of Geodesy, vol. 74, no. 7–8, pp. 552–560, 2000.CrossrefGoogle Scholar

  • [36]

    D. Nagy, G. Papp, and J. Benedek, “Corrections to ‘The gravitational potential and its derivatives for the prism’,” Journal of Geodesy, vol. 76, no. 8, pp. 475–475, Nov. 2002.CrossrefGoogle Scholar

  • [37]

    H.-G. Wenzel, “The Nanogal software: earth tide data processing package ETERNA 3.30,” Bull. Inf. Marees Terrestres, no. 124, pp. 9425–9439, 1996.Google Scholar

  • [38]

    Y. Tamura, “A harmonic development of the tide-generating potential,” Bull. Inf. Marees Terrestres, no. 124, pp. 9425–9439, 1987.Google Scholar

  • [39]

    F. Lyard, F. Lefevre, T. Letellier, and O. Francis, “Modelling the global ocean tides: modern insights from FES2004,” Ocean Dynamics, vol. 56, no. 5, pp. 394–415, Dec. 2006.CrossrefGoogle Scholar

  • [40]

    J.-P. Boy and F. Lyard, “High-frequency non-tidal ocean loading effects on surface gravity measurements,” Geophys J Int, vol. 175, no. 1, pp. 35–45, Oct. 2008.CrossrefGoogle Scholar

  • [41]

    S. Rosat et al., “A two-year analysis of the iOSG-24 superconducting gravimeter at the low noise underground laboratory (LSBB URL) of Rustrel, France: Environmental noise estimate,” Journal of Geodynamics, vol. 119, pp. 1–8, Sep. 2018.CrossrefGoogle Scholar

  • [42]

    C. R. Wilson, B. Scanlon, J. Sharp, L. Longuevergne, and H. Wu, “Field test of the superconducting gravimeter as a hydrologic sensor,” Ground Water, vol. 50, no. 3, pp. 442–449, Jun. 2012.CrossrefGoogle Scholar

  • [43]

    S. Swenson, D. Chambers, and J. Wahr, “Estimating geocenter variations from a combination of GRACE and ocean model output,” J. Geophys. Res., vol. 113, no. B8, p. B08410, Aug. 2008.Google Scholar

  • [44]

    M. Cheng, B. D. Tapley, and J. C. Ries, “Deceleration in the Earth’s oblateness,” J. Geophys. Res. Solid Earth, vol. 118, no. 2, pp. 740–747, Feb. 2013.CrossrefGoogle Scholar

  • [45]

    J. Wahr, R. S. Nerem, and S. V. Bettadpur, “The pole tide and its effect on GRACE time-variable gravity measurements: Implications for estimates of surface mass variations,” J. Geophys. Res. Solid Earth, vol. 120, no. 6, p. 2015JB011986, Jun. 2015.Google Scholar

  • [46]

    J. Ries et al., “The Combined Gravity Model GGM05C.” GFZ Data Services, 2016.

  • [47]

    S. Swenson and J. Wahr, “Post-processing removal of correlated errors in GRACE data,” Geophys. Res. Lett., vol. 33, no. 8, p. L08402, Apr. 2006.Google Scholar

  • [48]

    D. Piretzidis, G. Sra, G. Karantaidis, M. G. Sideris, and H. Kabirzadeh, “Identifying presence of correlated errors using machine learning algorithms for the selective de-correlation of GRACE harmonic coefficients,” Geophys J Int, vol. 215, no. 1, pp. 375–388, Oct. 2018.CrossrefGoogle Scholar

  • [49]

    D. Piretzidis and M. G. Sideris, “SHADE: A MATLAB toolbox and graphical user interface for the empirical de-correlation of GRACE monthly solutions,” Computers & Geosciences, vol. 119, pp. 137–150, Oct. 2018.CrossrefGoogle Scholar

  • [50]

    C. Jekeli, Alternative methods to smooth the Earth’s gravity field. Columbus, Ohio: Ohio State University Dept. of Geodetic Science and Surveying, 1981.Google Scholar

  • [51]

    H. Wang et al., “Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0,” Computers & Geosciences, vol. 49, no. Supplement C, pp. 190–199, Dec. 2012.CrossrefGoogle Scholar

  • [52]

    F. W. Landerer and S. C. Swenson, “Accuracy of scaled GRACE terrestrial water storage estimates,” Water Resour. Res., vol. 48, no. 4, p. W04531, Apr. 2012.Google Scholar

  • [53]

    J. Wahr, M. Molenaar, and F. Bryan, “Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE,” J. Geophys. Res., vol. 103, no. B12, pp. 30205–30229, Dec. 1998.CrossrefGoogle Scholar

  • [54]

    P. Vaníček, “Further development and properties of the spectral analysis by least-squares,” Astrophys Space Sci, vol. 12, no. 1, pp. 10–33, Jul. 1971.CrossrefGoogle Scholar

  • [55]

    P. Vaníček, “Approximate spectral analysis by least-squares fit,” Astrophys Space Sci, vol. 4, no. 4, pp. 387–391, Aug. 1969.CrossrefGoogle Scholar

  • [56]

    R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “STL: A Seasonal-Trend Decomposition Procedure Based on Loess,” Journal of Official Statistics, vol. 6, no. 1, pp. 3–73, 1990.Google Scholar

  • [57]

    V. Humphrey, L. Gudmundsson, and S. I. Seneviratne, “Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes,” Surv Geophys, vol. 37, no. 2, pp. 357–395, Mar. 2016.CrossrefGoogle Scholar

  • [58]

    B. R. Scanlon et al., “Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data,” PNAS, p. 201704665, Jan. 2018.Google Scholar

  • [59]

    W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing Scatterplots,” Journal of the American Statistical Association, vol. 74, no. 368, pp. 829–836, Dec. 1979.CrossrefGoogle Scholar

  • [60]

    T. Yang, C. Wang, Z. Yu, and F. Xu, “Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage,” Global and Planetary Change, vol. 109, pp. 30–37, Oct. 2013.CrossrefGoogle Scholar

  • [61]

    B. Creutzfeldt, A. Güntner, H. Thoss, B. Merz, and H. Wziontek, “Measuring the effect of local water storage changes on in situ gravity observations: Case study of the Geodetic Observatory Wettzell, Germany,” Water Resources Research, vol. 46, no. 8, Aug. 2010.Google Scholar

  • [62]

    C. Schär et al., “The role of increasing temperature variability in European summer heatwaves,” Nature, vol. 427, no. 6972, pp. 332–336, Jan. 2004.CrossrefGoogle Scholar

  • [63]

    J. Luterbacher, D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner, “European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500,” Science, vol. 303, no. 5663, pp. 1499–1503, Mar. 2004.CrossrefGoogle Scholar

  • [64]

    NOAA-NCEI, “NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2005,” 2006. [Online]. Available: https://www.ncdc.noaa.gov/sotc/global/200513. [Accessed: 26-Nov-2018].Google Scholar

  • [65]

    NOAA-NCEI, “NOAA National Centers for Environmental Information, State of the Climate: Global Hazards for May 2010,” 2010. [Online]. Available: https://www.ncdc.noaa.gov/sotc/hazards/201005. [Accessed: 26-Nov-2018].Google Scholar

  • [66]

    P. Bissolli, K. Friedrich, J. Rapp, and M. Ziese, “Flooding in eastern central Europe in May 2010 – reasons, evolution and climatological assessment,” Weather, vol. 66, no. 6, pp. 147–153, Jun. 2011.CrossrefGoogle Scholar

  • [67]

    NOAA-NCEI, “NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2013,” 2014. [Online]. Available: https://www.ncdc.noaa.gov/sotc/global/201313. [Accessed: 26-Nov-2018].Google Scholar

  • [68]

    NOAA-NCEI, “NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for June 2013,” 2013. [Online]. Available: https://www.ncdc.noaa.gov/sotc/global/201306. [Accessed: 26-Nov-2018].Google Scholar

  • [69]

    NOAA-NCEI, “NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2015,” 2016. [Online]. Available: https://www.ncdc.noaa.gov/sotc/global/201513. [Accessed: 26-Nov-2018].Google Scholar

  • [70]

    I. Pińskwar, A. Choryński, D. Graczyk, and Z. W. Kundzewicz, “Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990,” Theor Appl Climatol, Jan. 2018.Google Scholar

  • [71]

    U. Somorowska, “Changes in Drought Conditions in Poland over the Past 60 Years Evaluated by the Standardized Precipitation-Evapotranspiration Index,” Acta Geophys., vol. 64, no. 6, pp. 2530–2549, Dec. 2016.CrossrefGoogle Scholar

  • [72]

    R. Pawlowicz, M_Map: A mapping package for MATLAB. 2018.

About the article

Received: 2019-01-15

Accepted: 2019-03-28

Published Online: 2019-04-20

Published in Print: 2019-07-26


Funding Source: Narodowe Centrum Nauki

Award identifier / Grant number: UMO-2015/17/B/ST10/03927

Financial support for this research was provided to the first author by the National Science Center, Poland, agreement number UMO-2015/17/B/ST10/03927 from 16th March 2016; and to the third author by Natural Sciences and Engineering Research Council of Canada.


Citation Information: Journal of Applied Geodesy, Volume 13, Issue 3, Pages 229–243, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2019-0003.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in