Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris


CiteScore 2018: 1.61

SCImago Journal Rank (SJR) 2018: 0.532
Source Normalized Impact per Paper (SNIP) 2018: 1.064

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 13, Issue 3

Issues

Occurrences of counter electrojets and possible ionospheric TEC variations round new Moon and full Moon days across the low latitude Indian region

Prashanthi Talari
  • Department of Electronics and Communication Engineering, KL Deemed to be University, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sampad Kumar Panda
  • Corresponding author
  • Department of Electronics and Communication Engineering, KL Deemed to be University, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-08 | DOI: https://doi.org/10.1515/jag-2019-0014

Abstract

The present paper investigates the alterations in ionospheric Total Electron Content (TEC) over a low latitude location Bangalore (Geographic latitude 12.9N and longitude 77.6E; Geomagnetic latitude 4.5N) in India, corresponding to the new Moon and full Moon days which are associated with abnormality in the eastward Equatorial Electrojet (EEJ) currents. It has been well established that even during certain geomagnetic quiet days, the EEJ current direction is reversed, resulting in a westward electrojet current called Counter Electrojet (CEJ) which is more prominent around the new Moon and full Moon days, favored by Sun–Moon–Earth alignments and lunar orbital characteristics. The Global Positioning System (GPS) derived TEC at Bangalore is investigated for full Moon and new Moon and their adjacent days during the period 2008–2015. The presence of CEJ during these days suggests the foremost role of driving EEJ current over the equator in the alterations of spatiotemporal distributions of TEC over the low latitude region. The deviations in quiet time TEC during new Moon and full Moon days are quantified in this study that may give a thrust towards modeling of lunar tidal effects in the flipped ionospheric parameter over the Indian region. The study would also support analysis of future solar eclipse effects on ionosphere those involve additional photoionization production/recombination processes corresponding to the passage of lunar shadow and cooling effects. Moreover, the results underpin modeling and mitigation of ionospheric error in the satellite-based positioning, navigation, and communication applications.

Keywords: Equatorial Electrojet (EEJ); Total Electron Content (TEC); new Moon; full Moon; Counter Electrojet (CEJ)

References

  • [1]

    Panda, S. K., Gedam, S. S., & Jin, S., 2015. Ionospheric TEC variations at low latitude Indian region. In Satellite Positioning-Methods, Models and Applications. In Tech-Publisher, Rijeka, Croatia, pp. 149–174.Google Scholar

  • [2]

    Panda, S. K., & Gedam, S. S., 2016. Evaluation of GPS standard point positioning with various ionospheric error mitigation techniques. Journal of Applied Geodesy, 10(4), 211–221.Web of ScienceGoogle Scholar

  • [3]

    Langley, R. B., 1997. The GPS error budget. GPS world, 8(3):51–56.Google Scholar

  • [4]

    Ansari, K., Panda, S. K., & Corumluoglu, O., 2018. Mathematical modelling of ionospheric TEC from Turkish permanent GNSS Network (TPGN) observables during 2009–2017 and predictability of NeQuick and Kriging models. Astrophysics and Space Science, 363(3), 42.Web of ScienceCrossrefGoogle Scholar

  • [5]

    Ratnam, D. V., Vishnu, T. R., and Harsha, P. B. S., 2018. Ionospheric Gradients Estimation and Analysis of S-Band Navigation Signals for NAVIC System, IEEE Access, 6, 66954–66962. doi:.CrossrefGoogle Scholar

  • [6]

    Elsayed, A., Sedeek, A., Doma, M., Rabah, M., 2019. Vertical ionospheric delay estimation for single-receiver operation. Journal of Applied Geodesy, 13(2), 81–91. doi:.CrossrefWeb of ScienceGoogle Scholar

  • [7]

    Maruyama, T., 2010. Solar proxies pertaining to empirical ionospheric total electron content models. Journal of Geophysical Research: Space Physics, 115(A4).Web of ScienceGoogle Scholar

  • [8]

    Hernández-Pajares, M., Juan, J. M., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., and Krankowski, A., 2009. The IGS VTEC maps: a reliable source of ionospheric information since 1998. Journal of Geodesy, 83, 263–275.CrossrefWeb of ScienceGoogle Scholar

  • [9]

    Paulino, A. R., Lima, L. M., Almeida, S. L., Batista, P. P., Batista, I. S., Paulino, I., & Wrasse, C. M., 2017. Lunar tides in total electron content over Brazil. Journal of Geophysical Research: Space Physics, 122(7), 7519–7529.Web of ScienceGoogle Scholar

  • [10]

    Abdullah, M., Strangeways, H. J., & Walsh, D. M., 2009. Improving ambiguity resolution rate with an accurate ionospheric differential correction. The Journal of Navigation, 62(1), 151–166.CrossrefGoogle Scholar

  • [11]

    Fejer, B. G., & Tracy, B. D., 2013. Lunar tidal effects in the electrodynamics of the low latitude ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 103, 76–82.Web of ScienceCrossrefGoogle Scholar

  • [12]

    Bhuyan, P. K., Chamua, M., Subrahmanyam, P., and Garg, S.C., 2006. Effect of solar activity on diurnal and seasonal variations of electron temperature measured by the SROSS C2 over Indian low latitudes. Advances in Space Research, 37(5), 885–891.CrossrefGoogle Scholar

  • [13]

    Rama Rao, P. V. S., Gopi Krishna, S., Niranjan, K., and Prasad, D. S. V. V. D., 2006. Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Annales Geophysicae, 24(12), 3279–3292.CrossrefGoogle Scholar

  • [14]

    Bagiya, M. S., Joshi, H. P., Iyer, K. N., Aggarwal, M., Ravindran, S., and Pathan, B. M., 2009. TEC variations during low solar activity period (2005–2007) near the equatorial Ionospheric anomaly crest region in India. Annales Geophysicae, 27(3), 1047–1057.CrossrefWeb of ScienceGoogle Scholar

  • [15]

    Chauhan, V., Singh, O. P., and Singh, B., 2011. Diurnal and seasonal variation of GPS-TEC during Low solar activity period as observed at a low latitude station Agra. Indian Journal of Radio and Space Physics, 40, 26–36.Google Scholar

  • [16]

    Galav, P., Dashora, N., Sharma, S., and Pandey, R., 2010. Characterization of low latitude GPS-TEC during very low solar activity phase. Journal of Atmospheric and Solar-Terrestrial Physics, 72(17), 1309–1317.CrossrefWeb of ScienceGoogle Scholar

  • [17]

    Panda, S. K., Gedam, S. S., and Rajaram, G., 2013 Ionospheric characteristics of low latitude anomaly zone over Indian region by ground-based GPS, radio occultation and SPIM model predictions. In Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 1839–1842.Google Scholar

  • [18]

    Panda, S. K., Gedam, S. S., and Rajaram, G., 2015. Study of Ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian subcontinental region. Advances in Space Research, 55(8), 1948–1964.Web of ScienceCrossrefGoogle Scholar

  • [19]

    Panda, S. K., Gedam, S. S., Rajaram, G., Sripathi, S., Pant, T. K., & Das, R. M., 2014. A multi-technique study of the 29–31 October 2003 geomagnetic storm effect on low latitude ionosphere over Indian region with magnetometer, ionosonde, and GPS observations. Astrophysics and Space Science, 354(2), 267–274.Web of ScienceCrossrefGoogle Scholar

  • [20]

    Reddybattula, K. D., & Panda, S. K., 2019, in press. Performance Analysis of Quiet and Disturbed Time Ionospheric TEC Responses from GPS-based Observations, IGS-GIM, IRI-2016 and SPIM/IRI-Plas 2017 Models over the Low Latitude Indian Region. Advances in Space Research, doi:.CrossrefGoogle Scholar

  • [21]

    Tomás, A.T., Lühr, H., Rother, M., Manoj, C., Olsen, N., Watari, S., 2008. What are the influences of solar eclipses on the equatorial electrojet? J. Atmos. Sol.-Terr. Phys. 70 (11-12), 1497–1511.Web of ScienceCrossrefGoogle Scholar

  • [22]

    Yamazaki, Y., & Maute, A., 2017. Sq and EEJ—A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Science Reviews, 206(1-4), 299–405.CrossrefWeb of ScienceGoogle Scholar

  • [23]

    Siddiqui, T. A. 2017. Long-term investigation of the lunar tide in the equatorial electrojet during stratospheric sudden warmings.

  • [24]

    Rishbeth, H., and Garriott, O. K., 1969. Introduction to ionospheric physics. International Geophysics series. Academic Press, New York and London.Google Scholar

  • [25]

    Rastogi, R. G., 1989. The equatorial electrojet: magnetic and ionospheric effects. Geomagnetism, 3:461–525, Academic Press, SanDiego, CA.Google Scholar

  • [26]

    Dabbakuti J. R. K. K., Venkata Ratnam, D., 2017. Modeling and analysis of GPS-TEC low latitude climatology during the 24th solar cycle using empirical orthogonal functions, Advances in Space Research, 60(8), 1751–1764. doi:.CrossrefWeb of ScienceGoogle Scholar

  • [27]

    Gulyaeva, T. L., Arikan, F., Sezen, U., & Poustovalova, L. V., 2018. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model. Journal of Atmospheric and Solar-Terrestrial Physics, 172, 122–128.Web of ScienceCrossrefGoogle Scholar

  • [28]

    Bilitza, D., & Reinisch, B., 2019. Preface: Evaluation IRI performance. Advances in Space Research, 63, 1837.Web of ScienceCrossrefGoogle Scholar

  • [29]

    Chapman, S., 1951. The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere. Arch. Meteorol. Geophys. Bioklimatol. Ser. Al4(1), 368–390.Google Scholar

  • [30]

    Deshpande, M. R., et al., 1977. Effect of electrojet on the TEC of the ionosphere over the Indian subcontinent, Nature, 267, 599.CrossrefGoogle Scholar

  • [31]

    Jain, A. R., Deshpande, M. R., Sethia, G., Rastogi, R. G., Singh, M., Gurm, H. S., Janve, A.V., Rai, R. K., 1978. Geomagnetic storm effects on ionospheric total electron content in Indian zone, Indian J. Radio Space Phys., 7(2), 111.Google Scholar

  • [32]

    Jain, A. R., Deshpande, M. R., Sethia, G., Rastogi, R. G., Singh, M., Gurm, H. S., Janve, A. V., Rai, R. K., 1978. Geomagnetic Storm Effects on Ionospheric Total Electron Content in Indian Zone-Part II: Evidence of Equatorial Electrojet Control through Fountain Effect, Indian J. Radio Space Phys., 7(5), 254.Google Scholar

  • [33]

    MacDougall, J., 1969. The equatorial ionospheric anomaly and the equatorial electrojet, Radio Sci., 4, 805.CrossrefGoogle Scholar

  • [34]

    Sethia, G., Rastogi, R. G., Deshpande, M. R., and Chandra, H., 1980. Equatorial electrojet control of the low latitude ionosphere, J. Geomagn. Geoelectr., 32, 208.Google Scholar

  • [35]

    Panda, S. K., Gedam, S. S., Rajaram, G., Sripathi, S., & Bhaskar, A., 2015. Impact of the 15 January 2010 annular solar eclipse on the equatorial and low latitude ionosphere over the Indian region. Journal of Atmospheric and Solar-Terrestrial Physics, 135, 181–191.Web of ScienceCrossrefGoogle Scholar

  • [36]

    Yamazaki, Y., & Maute, A., 2017. Sq and EEJ—A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Science Reviews, 206(1-4), 299–405.CrossrefWeb of ScienceGoogle Scholar

  • [37]

    Chandra, H., Misra, R., Rastogi, R., 1971. Equatorial ionospheric drift and the electrojet. Planet. Space Sci. 19 (11), 1497–1503.CrossrefGoogle Scholar

  • [38]

    Rastogi, R.G., Klobuchar, J.A., 1990. Ionospheric electron content within the equatorial F2 layer anomaly belt. J. Geophys. Res. Space Phys. 95 (A11), 19045–19052.CrossrefGoogle Scholar

  • [39]

    Manoj, C., Lühr, H., Maus, S., Nagarajan, N., 2006. Evidence for short spatial correlation lengths of the noontime equatorial electrojet inferred from a comparison of satellite and ground magnetic data. J. Geophys. Res. 111 (A11), A11312.CrossrefGoogle Scholar

  • [40]

    Sripathi, S., Bhattacharyya, A., 2012. Quiet time variability of the GPS TEC and EEJ strength over Indian region associated with major sudden stratospheric warming events during 2005/2006. J. Geophys. Res. 117 (A5), A05305.Web of ScienceGoogle Scholar

  • [41]

    Bhaskar, A., Vichare, G., 2013. Characteristics of penetration electric fields to the equatorial ionosphere during southward and northward IMF turnings. J. Geophys. Res. Space Phys 118 (7), 4696–4709.Web of ScienceCrossrefGoogle Scholar

  • [42]

    Klobuchar, J. A., 1991. Ionospheric effect on GPS. GPS world, 2(4), 48–51.Google Scholar

  • [43]

    Seemala, G.K., Valladares, C.E., 2011. Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 46 (5), RS5019.Web of ScienceGoogle Scholar

  • [44]

    Schaer, S., March 1999. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Ph.D. thesis, Astronomical Institute, University of Berne. Berne, Switzerland.Google Scholar

About the article

Received: 2019-04-10

Accepted: 2019-04-25

Published Online: 2019-05-08

Published in Print: 2019-07-26


Citation Information: Journal of Applied Geodesy, Volume 13, Issue 3, Pages 245–255, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2019-0014.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in