Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial General Intelligence

The Journal of the Artificial General Intelligence Society

3 Issues per year

Open Access
Online
ISSN
1946-0163
See all formats and pricing
More options …

Conceptual Commitments of the LIDA Model of Cognition

Stan Franklin / Steve Strain / Ryan McCall / Bernard Baars
Published Online: 2014-04-25 | DOI: https://doi.org/10.2478/jagi-2013-0002

Abstract

Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses “conceptual commitments” and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

Keywords : asynchrony; cognitive cycle; cognitive model; commitments; consciousness; embodied; Global Workspace Theory; learning; LIDA; memory; motivation; non-linear dynamics; theta-gamma coupling

References

  • Anderson, J. R. (2007). Using brain imaging to guide the development of a cognitive architecture. In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 49-62). New York: Oxford University Press.Google Scholar

  • Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An Integrated Theory of the Mind Psychological Review, 111( 4), 1036-1060.Google Scholar

  • Armstrong, I. T., & Mewhort, D. (1995). Repetition deficit in rapid-serial-visual-presentation displays: Encoding failure or retrieval failure? Journal of Experimental Psychology:Human Perception and Performance, 21(5), 1044.Google Scholar

  • Augustenborg, C. C. (2010). The Endogenous Feedback Network: A new approach to the comprehensive study of consciousness. Consciousness and Cognition. doi: 10.1016/j.concog.2010.03.007CrossrefPubMedGoogle Scholar

  • Baars, B., Franklin, S., & Ramsøy, T. (2013). Global workspace dynamics: Cortical “binding and propagation” enables conscious contents. Frontiers in Consciousness Research, 4, 200. doi: 10.3389/fpsyg.2013.00200CrossrefGoogle Scholar

  • Baars, Bernard J. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.Google Scholar

  • Baars, Bernard J. (2002). The conscious access hypothesis: origins and recent evidence. Trends inCognitive Science, 6, 47-52.Google Scholar

  • Baars, Bernard J., & Franklin, S. (2003). How conscious experience and working memory interact. Trends in Cognitive Science, 7, 166-172.Google Scholar

  • Bach, J. (2008). Seven principles of synthetic intelligence. In P. Wang, G. Goertzel & S. Franklin (Eds.), Artif icial General Intelligence 2008: Proceedings of the First AGI Conference (pp. 63-74). Amsterdam: IOS Press.Google Scholar

  • Bach, J., Goertzel, B., & Iklé, M. (Eds.). (2012). Artificial General Intelligence: 5th InternationalConference. Oxford, UK: Springer.Google Scholar

  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), The Psychologyof Learning and Motivation. New York: Academic Press.Google Scholar

  • Barham, J. (1996). A dynamical model of the meaning of information. BioSystems, 38, 235-241.CrossrefPubMedGoogle Scholar

  • Barsalou, L. W. (1999a). Perceptual symbol systems. Behavioral and Brain Sciences, 22(04), 577-609.Google Scholar

  • Barsalou, L. W. (1999b). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-609.Google Scholar

  • Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol., 59, 617-645.CrossrefGoogle Scholar

  • Bjork, E. L., & Bjork, R. A. (1988). On the adaptive aspects of retrieval failure in autobiographical memory.Google Scholar

  • Block, N. (2007). Consciousness, Accessibility and the Mesh between Psychology and Neuroscience. Behavioral and Brain Sciences, 30, 481-548.Google Scholar

  • Boltea, A., & Goschke, T. (2008). Intuition in the context of object perception: Intuitive gestalt judgments rest on the unconscious activation of semantic representations. Cognition,108(3), 608-616. doi: 10.1016/j.cognition.2008.05.001CrossrefGoogle Scholar

  • Born, J., & Wagner, U. (2006). Memory Consolidat ion during Sleep: Role of Cortisol Feedback. Annals of the New York Academy of Sciences, 1032, 198 - 201. doi: 10.1196/annals.1314.020CrossrefGoogle Scholar

  • Brainerd, C. J., & Dempster, F. N. (1995). Interference and inhibition in cognition: Academic Press.Google Scholar

  • Bullock, T. H. (1993). Goals and Strategies in Brain Research: The Place of Comparative Neurology. In T. H. Bullock (Ed.), How Do Brains Work?: Papers of a ComparativeNeurophysiologist How Do Brains Work?: Papers of a Comparative Neurophysiologist. Boston: Birkhauser.Google Scholar

  • Campanella, J., & Rovee‐ Collier, C. (2005). Latent learning and deferred imitation at 3 months. Infancy, 7(3), 243-262.CrossrefGoogle Scholar

  • Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Knight, R. T. (2006). High gamma power is phase-locked to theta oscillat ions in human neocortex. Science, 313(5793), 1626-1628.Google Scholar

  • Canolty, R. T., & Knight, R. T. (2010). The functional role of cross -frequency coupling. Trendsin Cognitive Sciences, 14(11), 506-515. doi: 10.1016/j.tics.2010.09.001CrossrefGoogle Scholar

  • Cansino, S. (2009). Episodic memory decay along the adult lifespan: A review of behavioral and neurophysiological evidence. International Journal of Psychophysiology, 71(1), 64-69.CrossrefGoogle Scholar

  • Chamizo, V. D., & Mackintosh, N. (1989). Latent learning and latent inhibit ion in maze discriminations. The Quarterly Journal of Experimental Psychology, 41(1), 21-31.Google Scholar

  • Chandler, C. C. (1991). How memory for an event is influenced by related events: Interference in modified recognition tests. Journal of Experimental Psychology: Learning, Memory, andCognition, 17, 115-125.Google Scholar

  • Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from the front. Trends in Cognitive Sciences, 2(10), 406-416.Google Scholar

  • Connor, D., & Shanahan, M. (2010). A computational model of a global neuronal workspace with stochastic connections. Neural Netw, 23(10), 1139-1154. doi: S0893-6080(10)00143-7 [pii]10.1016/j.neunet.2010.07.005PubMedGoogle Scholar

  • Conway, Martin A. (2001). Sensory-perceptual episodic memory and its context: autobiographical memory. Philos. Trans. R. Soc. Lond B., 356, 1375-1384.Google Scholar

  • Conway, M. A. (2002). Sensory-perceptual episodic memory and its context: Autobiographical memory. In A. Baddeley, M. Conway & J. Aggleton (Eds.), Episodic Memory. Oxford: Oxford University Press.Google Scholar

  • Craik, F. I., Routh, D. a., Broadbent, D., & Craik, F. (1983). On the Transfer of Information from Temporary to Permanent Memory [and Discussion]. Philosophical Transactions of theRoyal Society of London. B, Biological Sciences, 302(1110), 341-359.Google Scholar

  • Cutsuridis, V., Hussain, A., & Taylor, J. G. (2011). Perception-Action Cycle: Models,Architectures, and Hardware (Vol. 1): Springer.Google Scholar

  • Daum, M. M., Sommerville, J. A., & Prinz, W. (2009). Disentangling embodied and symbolic modes of social understanding. European Journal of Social Psychology, 39(7), 1214-1216.CrossrefGoogle Scholar

  • de Garis, H., & Goertzel, B. (2009a). Report on the 2nd International Conference on Artificial General Intelligence (AGI-09). AI Magazine, 115~116.Google Scholar

  • de Garis, H., & Goertzel, B. (2009b). Report on the First Conference on Artificial General Intelligence (AGI-08). AI Magazine, 30, 121-123.Google Scholar

  • de Vega, M., Glenberg, A., & Graesser, A. (Eds.). (2008). Symbols and Embodiment: Debates onmeaning and cognition. Oxford: Oxford University Press.Google Scholar

  • Dennett, D. (2005). Sweet Dreams : Philosophical Obstacles to a Science of Consciousness. Cambridge, MA: MIT Press.Google Scholar

  • Dennis, J. L., & Schutter, G. (2004). Extending the global workspace theory to emotion: Phenomenality without access. Consciousness and Cognition, 13(3), 539-549.Google Scholar

  • Designing Intelligent Robots: Reintegrating AI II. (2012). AAAI Spring Symposium 2013 Retrieved December 21, 2012, from http://people.csail.mit.edu/gdk/dir2/index.htmlGoogle Scholar

  • Dijkstra, T. M. H., Schöner, G., & Gielen, C. C. A. M. (1994). Temporal stability of the actionperception cycle for postural control in a moving visual environment. Experimental BrainResearch, 97(3), 477-486.Google Scholar

  • Doesburg, S., Green, J., McDonald, J., & Ward, L. (2009). Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception. PLoS ONE, 4(7), e6142. doi: 10.1371/journal.pone.0006142CrossrefGoogle Scholar

  • Drescher, Gary L. (1991). Made-Up Minds: A Constructivist Approach to Artificial Intelligence. Cambridge, MA: MIT Press.Google Scholar

  • Edelman, Gerald M., & Tononi, G. (2000). A Universe of Consciousness. New York: Basic Books.Google Scholar

  • Eimer, M., & Schlagecken, F. (2003). Response facilitation and inhibit ion in subliminal priming. Biological Psychology, 64, 7-26.CrossrefGoogle Scholar

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review,102(2), 211-245.PubMedCrossrefGoogle Scholar

  • Faghihi, U., & Franklin, S. (2012). The LIDA Model as a Foundational Architecture for AGI. In P. Wang & B. Goertzel (Eds.), Theoretical Foundations of Artificial General Intelligence (pp. 105-123). Paris: Atlantis Press.Google Scholar

  • Faghihi, U., McCall, R., & Franklin, S. (2012). A Computational Model of Attentional Learning in a Cognitive Agent. Biologically Inspired Cognitive Architectures, 2, 25-36.Google Scholar

  • Franklin, S. (1997). Autonomous Agents as Embodied AI. Cybernetics and Systems, 28, 499-520.Google Scholar

  • Franklin, S., & Baars, B. J. (2010). Spontaneous remembering is the norm: What integrative models tell us about human consciousness and memory. In John H. Mace (Ed.), The Act ofRemembering: Toward an understanding of how we recall the past. Oxford: Blackwell.Google Scholar

  • Franklin, S., Baars, B. J., Ramamurthy, U., & Ventura, M. (2005). The Role of Consciousness in Memory. Brains, Minds and Media, 1, 1-38.Google Scholar

  • Franklin, S., & Ramamurthy, U. (2006). Motivations, Values and Emotions: Three sides of the same coin Proceedings of the Sixth International Workshop on Epigenetic Robotics (Vol. 128, pp. 41-48). Paris, France: Lund University Cognitive Studies.Google Scholar

  • Franklin, S., Strain, S., Snaider, J., McCall, R., & Faghihi, U. (2012). Global Workspace Theory, its LIDA model and the underlying neuroscience. Biologically Inspired CognitiveArchitectures, 1, 32-43. doi: 10.1016/j.bica.2012.04.001CrossrefGoogle Scholar

  • Franks, N. R., Hooper, J. W., Dornhaus, A., Aukett, P. J., Hayward, A. L., & Berghoff, S. M. (2007). Reconnaissance and latent learning in ants. Proceedings of the Royal Society B:Biological Sciences, 274(1617), 1505-1509.Google Scholar

  • Freeman, W. J. (2002). The limbic action-perception cycle controlling goal-directed animal behavior. Neural Networks, 3, 2249-2254.Google Scholar

  • Freeman, W. J. (2003). A neurobiological theory of meaning in perception. Part 1. Information and meaning in nonconvergent and nonlocal brain dynamics. International Journal ofBifurcation and Chaos, 13, 2493-2511.Google Scholar

  • Fuster, J. (2006). The cognit: a network model of cortical representation. International Journal ofPsychophysiology, 60, 125-132.Google Scholar

  • Fuster, J. M. (2002). Physiology of executive functions: The perception-action cycle.Google Scholar

  • Fuster, J. M. (2004). Upper processing stages of the perception-action cycle. Trends in CognitiveSciences, 8(4), 143-145.PubMedGoogle Scholar

  • Fuster, J. M., & Bressler, S. L. (2012). Cognit activation: a mechanism enabling temporal integration in working memory. Trends in Cognitive Sciences, 16(4), 207-218.Google Scholar

  • Gaillard, R., Dehaene, S., Adam, C., Clémenceau, S., Hasboun, D., et al. (2009). Converging intracranial markers of conscious access. PLoS Biology, 7(3), e1000061. doi: 10.1371/journal.pbio.1000061CrossrefGoogle Scholar

  • Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20(01), 1-19.Google Scholar

  • Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language,43(3), 379-401.Google Scholar

  • Goertzel, B., & Pennachin, C. (2007). Artificial General Intelligence. Berlin: Springer.Google Scholar

  • Goertzel, B., & Wang, P. (Eds.). (2007). Advances in artificial general intelligence : concepts, architectures and algorithms. Amsterdam; Washington, DC: IOS Press.Google Scholar

  • Graves, Laurel A., Heller, Elizabeth A., Pack, Allan I., & Abel, T. (2003). Sleep Deprivation Selectively Impairs Memory Consolidat ion for Contextual Fear Conditioning. Learning &Memory, 10, 168-176.Google Scholar

  • Gunzelmann, G., Gluck, K. A., Van Dongen, H. P. A., O’Connor, R. M., & Dinges, D. F. (2005). A Neurobehaviorally Inspired ACT-R Model of Sleep Deprivation: Decreased Performance in Psychomotor Vigilance. In B. G. Bara, L. Barsalou & M. Bucciarelli (Eds.), Proceedings of the Twenty-Seventh Annual Meeting of the Cognitive Science Society (pp. 857-862). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar

  • Hofstadter, D. R., & Mitchell, M. (1995). The Copycat Project: A model of mental fluidity and analogy-making. In K. J. Holyoak & J. Barnden (Eds.), Advances in connectionist andneural computation theory, Vol. 2: logical connections (pp. 205-267). Norwood N.J.: Ablex.Google Scholar

  • Izhikevich, E. M., & Edelman, G. M. ( 2008). Large-Scale Model of Mammalian Thalamocortical Systems. PNAS, 105, 3593-3598.CrossrefGoogle Scholar

  • Jimenez, L. (2003). Attention and implicit learning: John Benjamins Publishing Company.Google Scholar

  • Johnston, V. S. (1999). Why We Feel: The Science of Human Emotions. Reading, MA: Perseus Books.Google Scholar

  • Kaelbling, L. P. (1994). Associative Reinforcement Learning: A Generate and Test Algorithm. Machine Learning, 15(3), 299-319.CrossrefGoogle Scholar

  • Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive Architectures: Research Issues and Challenges. Cognitive Systems Research, 10(2), 141-160. doi: 10.1016/j.cogsys.2006.07.004CrossrefGoogle Scholar

  • Lewin, K. (1951). Field theory in sociall science: selected theoretical papers. New York: Harper & Row.Google Scholar

  • Longo, M. R. (2009). What's embodied and how can we tell? European Journal of SocialPsychology, 39(7), 1207-1209.Google Scholar

  • Madl, T., Baars, B. J., & Franklin, S. (2011). The Timing of the Cognitive Cycle. PLoS ONE,6(4), e14803. doi: 10.1371/journal.pone.0014803CrossrefGoogle Scholar

  • Madl, T., & Franklin, S. (2012, April 13-15). A LIDA-based Model of the Attentional Blink. Paper presented at the 11th International Conference on Cognitive Modeling, Berlin.Google Scholar

  • Maes, P. (1989). How to do the right thing. Connection Science, 1, 291-323.Google Scholar

  • McGaugh, J. L. (2000). Memory--a Century of Consolidat ion. Science, 287(5451), 248-251. doi: 10.1126/science.287.5451.248CrossrefGoogle Scholar

  • Miller, R. R., & Matzel, L. D. (2006). Retrieval failure versus memory loss in experimental amnesia: definitions and processes. Learning & Memory, 13(5), 491-497.PubMedGoogle Scholar

  • Nadel, L., Hupbach, A., Gomez, R., & Newman-Smith, K. (2012). Memory formation, consolidation and transformation. Neuroscience & Biobehavioral Reviews.PubMedGoogle Scholar

  • Neisser, U. (1976). Cognition and Reality: Principles and Implications of Cognitive Psychology San Francisco: W. H. Freeman.Google Scholar

  • Newell, A. (1973). You can’t play 20 questions with nature and win: Pro- jective comments on the papers of this symposium. In W. G. Chase (Ed.), Visual information processing. New York: Academic Press.Google Scholar

  • Nyhus, E., & Curran, T. (2010). Functional role of gamma and theta oscillations in episodic memory. Neuroscience & Biobehavioral Reviews, 34(7), 1023-1035.PubMedGoogle Scholar

  • Osipova, D., Takashima, A., Oostenveld, R., Fernández, G., Maris, E., & Jensen, O. (2006). Theta and gamma oscillat ions predict encoding and retrieval of declarative memory. TheJournal of neuroscience, 26(28), 7523-7531.Google Scholar

  • Panksepp, J. (2005). Affective consciousness: Core emotional feelings in animals and humans. Consciousness and Cognition, 14, 30-80.Google Scholar

  • Pfeifer, R., & Bongard, J. C. (2006). How the body shapes the way we think: a new view of intelligence: MIT press.Google Scholar

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning andVerbal Behavior, 6, 855-863.Google Scholar

  • Remondes, M., & Schuman, Erin M. (2004). Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature, 431, 699-703.Google Scholar

  • Roseman, I. J., & Smith, C. A. (2001). Appraisal theory: Overview, assumptions, varieties, controversies Appraisal processes in emotion: Theory, methods, research (pp. 3-19). New York: Oxford University Press.Samsonovich, A. V. (2008, November 7-9). BiologicallyInspired Cognitive Architectures: Papers from the AAAI Fall Symposium. Paper presented at the AAAI Fall Symposia, Arlington, Virginia.Google Scholar

  • Samsonovich, A. V. (2010). Toward a Unified Catalog of Implemented Cognitive Architectures. In A. V. Samsonovich, K. R. Jóhannsdóttir, A. Chella & B. Goertzel (Eds.), Proceeding ofthe 2010 Conference on Biologically Inspired Cognitive Architectures (pp. 195-244). Amsterdam: IOS Press.Google Scholar

  • Samsonovich, A. V., & Johannsdottir, K. R. (Eds.). (2011). Biologically Inspired Cognitive Architectures 2011 - Proceedings of the Second Annual Meeting of the BICA Society (Vol. 233). Amsterdam: IOS Press.Google Scholar

  • Samsonovich, A. V., Jóhannsdóttir, K. R. J., Chella, A., & Goertzel, B. (Eds.). (2010). Biologically Inspired Cognitive Architectures 2010 - Proceedings of the First AnnualMeeting of the BICA Society (Vol. 221). Amsterdam: IOS Press.Google Scholar

  • Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillat ions. Neuroscience &Biobehavioral Reviews, 34(7), 1015-1022.Google Scholar

  • Sauseng, P., Klimesch, W., Gruber, W. R., & Birbaumer, N. (2008). Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. NeuroImage,40(1), 308-317.CrossrefPubMedGoogle Scholar

  • Schmidhuber, J., Thorisson, K. R., & Looks, M. (2011, August 3-6). Artif icial GeneralIntelligence , Proceedings. Paper presented at the 4th International Conference, AGI 2011, Mountain View, CA, USA.Google Scholar

  • Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., & Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. The Journal ofNeuroscience, 23(34), 10809.Google Scholar

  • Sergent, C., & Dehaene, S. (2004). Neural processes underlying conscious perception: Experimental findings and a global neuronal workspace framework. Journal of Physiology-Paris, 98(4-6), 374-384. doi: 10.1016/j.jphysparis.2005.09.006CrossrefGoogle Scholar

  • Shanahan, M. P. (2006). A Cognitive Architecture that Combines Internal Simulation with a Global Workspace. Consciousness and Cognition, 15, 433-449.Google Scholar

  • Shiffrin, R. M. (1970). Forgetting: Trace erosion or retrieval failure? Science; Science.Google Scholar

  • Silverta, L., Delplanquea, S., Bouwalerha, H., Verpoorta, C., & Sequeira, H. (2004). Autonomic responding to aversive words without conscious valence discrimination. Int. J. Psychophysiol., 53, 135-145.CrossrefGoogle Scholar

  • Sims, C. R., & Gray, W. D. (2004). Episodic versus semantic memory: An exploration of modelsof memory decay in the serial attention paradigm. Paper presented at the 6th international conference on cognitive modeling (ICCM-2004), Pittsburgh, PA.Google Scholar

  • Sloman, A. (Ed.). (1999). What Sort of Architecture is Required for a Human-like Agent? Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar

  • Smith, C. A., & Kirby, L. D. (2001). Toward delivering on the promise of appraisal theory. In K. R. Scherer, A. Schorr & T. Johnstone (Eds.), Appraisal processes in emotion: Theory,Methods, Research (pp. 121-138). New York: Oxford University Press. Snaider, J., McCall, R., & Franklin, S. (2009). Time Production and Representation in aConceptual and Computational Cognitive Model. Paper presented at the AAAI Fall Symposium on Biologically Inspired Cognitive Architecture, Washington, DC.Google Scholar

  • Snaider, J., McCall, R., & Franklin, S. (2011). The LIDA Framework as a General Tool for AGI. Paper presented at the The Fourth Conference on Artificial General Intelligence (Springer Lecture Notes in Artificial Intelligence), Mountain View, California, USA.Google Scholar

  • Stickgold, R., & Walker, Matthew P. (2005). Memory consolidation and reconsolidat ion: what is the role of sleep? Trends Neurosci., 28, 408-415.CrossrefGoogle Scholar

  • Strain, S. F., Franklin, S., Heck, D. H., & Baars, B. J. (in preparation). Brain rhythms, cognitive cycles and mental moments.Google Scholar

  • Sukthankar, G. (2000). Face recognition: a critical look at biologically-inspired approaches: Carnegie Mellon University, the Robotics Institute.Google Scholar

  • Sun, R., & Franklin, S. (2007). Computational Models of Consciousness: A Taxonomy and some Examples. In P. D. Zelazo & M. Moscovitch (Eds.), Cambridge Handbook ofConsciousness (pp. 151-174). New York: Cambridge University Press.Google Scholar

  • Sun, R., & Naveh, I. (2004). Simulating organizat ional decision-making using a cognitively realistic agent model. Journal of Artif icial Societies and Social Simulation, 7(3).Google Scholar

  • Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in skill learning: A dual-process approach. Psychological Review, 112(1), 159-192.CrossrefPubMedGoogle Scholar

  • Taylor, J. G. (2011). A Review of Models of Consciousness. In V. Cutsuridis, A. Hussain & J. G.PubMedGoogle Scholar

  • Taylor (Eds.), Perception-Action Cycle: Models, Architectures, and Hardware (pp. 335-357).Google Scholar

  • Tononi, G. (2008). Consciousness as integrated information: a provisional manifesto. BiologicalBulletin, 215, 216-242,.Google Scholar

  • Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta-gamma coupling increases during the learning of item-context associations. PNAS,106(49), 20942-20947CrossrefGoogle Scholar

  • Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301-306.Google Scholar

  • Varela, F. J., Thompson, E., & Rosch, E. (1991). The Embodied Mind: Cognitive Science andHuman Experience. Cambridge, MA: MIT press.Google Scholar

  • Wallace, R. (2005). Consciousness: A Mathematical Treatment of the Global Neuronal Workspace Model. New York: Springer.Google Scholar

  • Wamsley, E. J., Tucker, M., Payne, J. D., Benavides, J. A., & Stickgold, R. (2010). Dreaming of a learning task is associated with enhanced sleep dependent memory consolidation. Current Biology.PubMedGoogle Scholar

  • Wang, P., Goertzel, B., & Franklin, S. (2008). Artificial General Intelligence 2008. Amsterdam: IOS Press.Google Scholar

  • Wiedemann, C. (2007). Memory consolidation...while you are sleeping. [10.1038/nrn2084]. NatRev Neurosci, 8(2), 86-87.Google Scholar

  • Yang, J., Xu, X., Du, X., Shi, C., & Fang, F. (2011). Effects of unconscious processing on implicit memory for fearful faces. PLoS ONE, 6(2), e14641.Google Scholar

  • Yerkes, R. M., & Dodson, J. D. (1908). The Relationship of Strength of Stimulus to Rapidity of Habit Formation. Journal of Comparative Neurology and Psychology, 18, 459-482.Google Scholar

  • Zhang, Q. (2009). A computational account of dreaming: Learning and memory consolidation. Cognitive Systems Research, 10(2), 91-101Google Scholar

About the article

Received: 2013-04-09

Accepted: 2013-07-08

Published Online: 2014-04-25

Published in Print: 2013-06-01


Citation Information: Journal of Artificial General Intelligence, ISSN (Online) 1946-0163, DOI: https://doi.org/10.2478/jagi-2013-0002.

Export Citation

© Stan Franklin et al.. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Janusz A. Starzyk and James Graham
IEEE Systems Journal, 2017, Volume 11, Number 3, Page 1272
[2]
José-Antonio Cervantes, Jonathan-Hernando Rosales, Sonia López, Félix Ramos, and Marco Ramos
Cognitive Systems Research, 2017, Volume 44, Page 10
[3]
Travis J. Wiltshire, Emilio J. C. Lobato, David R. Garcia, Stephen M. Fiore, Florian G. Jentsch, Wesley H. Huang, and Benjamin Axelrod
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2015, Volume 59, Number 1, Page 801
[4]
Travis J. Wiltshire, Samantha F. Warta, Daniel Barber, and Stephen M. Fiore
Cognitive Systems Research, 2017, Volume 43, Page 190
[5]
Stan Franklin, Tamas Madl, Steve Strain, Usef Faghihi, Daqi Dong, Sean Kugele, Javier Snaider, Pulin Agrawal, and Sheng Chen
Biologically Inspired Cognitive Architectures, 2016, Volume 16, Page 105
[6]
José-Antonio Cervantes, Luis-Felipe Rodríguez, Sonia López, Félix Ramos, and Francisco Robles
Cognitive Computation, 2016, Volume 8, Number 2, Page 278

Comments (0)

Please log in or register to comment.
Log in