Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial General Intelligence

The Journal of the Artificial General Intelligence Society

3 Issues per year

Open Access
Online
ISSN
1946-0163
See all formats and pricing
More options …

Artificial General Intelligence: Concept, State of the Art, and Future Prospects

Ben Goertzel
Published Online: 2014-12-30 | DOI: https://doi.org/10.2478/jagi-2014-0001

Abstract

In recent years broad community of researchers has emerged, focusing on the original ambitious goals of the AI field - the creation and study of software or hardware systems with general intelligence comparable to, and ultimately perhaps greater than, that of human beings. This paper surveys this diverse community and its progress. Approaches to defining the concept of Artificial General Intelligence (AGI) are reviewed including mathematical formalisms, engineering, and biology inspired perspectives. The spectrum of designs for AGI systems includes systems with symbolic, emergentist, hybrid and universalist characteristics. Metrics for general intelligence are evaluated, with a conclusion that, although metrics for assessing the achievement of human-level AGI may be relatively straightforward (e.g. the Turing Test, or a robot that can graduate from elementary school or university), metrics for assessing partial progress remain more controversial and problematic.

Keywords: AGI; general intelligence; cognitive science

References

  • Achler, T. 2012a. Artificial General Intelligence Begins with Recognition: Evaluating the Flexibility of Recognition. In Theoretical Foundations of Artificial General Intelligence. Springer. 197-217.Google Scholar

  • Achler, T. 2012b. Towards Bridging the Gap Between Pattern Recognition and Symbolic Representation Within Neural Networks. Workshop on Neural-Symbolic Learning and Reasoning, AAAI-2012.Google Scholar

  • Adams, S.; Arel, I.; Bach, J.; Coop, R.; Furlan, R.; Goertzel, B.; Hall, J. S.; Samsonovich, A.; Scheutz, M.; Schlesinger, M.; et al. 2012. Mapping the landscape of human-level artificial general intelligence. AI Magazine 33(1):25-42.Google Scholar

  • Albus, J. S. 2001. Engineering of mind: An introduction to the science of intelligent systems. Wiley.Google Scholar

  • Alvarado, N.; Adams, S. S.; Burbeck, S.; and Latta, C. 2002. Beyond the Turing test: Performance metrics for evaluating a computer simulation of the human mind. In The 2nd International Conference on Development and Learning, 147-152. IEEE.Google Scholar

  • Anderson, J. R., and Lebiere, C. 2003. The Newell test for a theory of cognition. Behavioral and Brain Sciences 26(05):587-601.Google Scholar

  • Anselmi, F.; Leibo, J. Z.; Rosasco, L.; Mutch, J.; Tacchetti, A.; and Poggio, T. 2013. Magic Materials: a theory of deep hierarchical architectures for learning sensory representations.Google Scholar

  • Arel, I.; Rose, D.; and Coop, R. 2009. Destin: A scalable deep learning architecture with application to high-dimensional robust pattern recognition. In Proc. AAAI Fall Symposium on Biologically Inspired Cognitive Architectures, 1150-1157.Google Scholar

  • Arel, I.; Rose, D.; and Karnowski, T. 2009. A deep learning architecture comprising homogeneous cortical circuits for scalable spatiotemporal pattern inference. In NIPS 2009 Workshop on Deep Learning for Speech Recognition and Related Applications.Google Scholar

  • Baars, B. J., and Franklin, S. 2009. Consciousness is computational: The LIDA model of global workspace theory. International Journal of Machine Consciousness 1(01):23-32.Google Scholar

  • Bach, J. 2009. Principles of synthetic intelligence PSI: an architecture of motivated cognition, volume 4. Oxford University Press.Google Scholar

  • Baran`es, A., and Oudeyer, P.-Y. 2009. R-IAC: Robust intrinsically motivated exploration and active learning. Autonomous Mental Development, IEEE Transactions on 1(3):155-169.Google Scholar

  • Ben-David, S., and Schuller, R. 2003. Exploiting task relatedness for multiple task learning. In Learning Theory and Kernel Machines. Springer. 567-580.Google Scholar

  • Bengio, Y. 2009. Learning deep architectures for AI. Foundations and Trends in Machine Learning 2(1):1-127.Google Scholar

  • Binet, A., and Simon, T. 1916. The development of intelligence in children: The Binet-Simon Scale. Number 11. Williams & Wilkins Company.Google Scholar

  • Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford University Press.Google Scholar

  • Brooks, R. A. 2002. Flesh and machines: How robots will change us. Pantheon Books New York Google Scholar

  • Cassimatis, N. 2007. Adaptive algorithmic hybrids for human-level Artificial Intelligence. In Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms, 94-112.Google Scholar

  • Damer, B.; Newman, P.; Gordon, R.; and Barbalet, T. 2010. The EvoGrid: simulating pre-biotic emergent complexity.Google Scholar

  • De Garis, H.; Shuo, C.; Goertzel, B.; and Ruiting, L. 2010. A world survey of artificial brain projects, Part I: Large-scale brain simulations. Neurocomputing 74(1):3-29.CrossrefGoogle Scholar

  • Duch, W.; Oentaryo, R. J.; and Pasquier, M. 2008. Cognitive Architectures: Where do we go from here? In Proceedings of the First Conference on Artificial General Intelligence, volume 171, 122-136.Google Scholar

  • Dye, L. 2010. Are Dolphins Also Persons? ABC News, Feb. 24 2010.Google Scholar

  • Franklin, S., and Graesser, A. 1997. Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents. In Intelligent agents III: agent theories, architectures, and languages. Springer. 21-35.Google Scholar

  • Franklin, S.; Strain, S.; Snaider, J.; McCall, R.; and Faghihi, U. 2012. Global workspace theory, its LIDA model and the underlying neuroscience. Biologically Inspired Cognitive Architectures 1:32-43.Google Scholar

  • French, R. M. 1996. Subcognition and the Limits of the Turing Test. Machines and thought 11-26.Google Scholar

  • Frye, J.; Ananthanarayanan, R.; and Modha, D. S. 2007. Towards real-time, mouse-scale cortical simulations. CoSyNe: Computational and Systems Neuroscience, Salt Lake City, Utah.Google Scholar

  • Gardner, H. 1999. Intelligence reframed: Multiple intelligences for the 21st century. Basic Books.Google Scholar

  • Gazzaniga, M. S.; Ivry, R. B.; and Mangun, G. R. 2009. Cognitive Neuroscience: The Biology of the Mind. W W Norton.Google Scholar

  • Goertzel, B., and Pennachin, C. 2007. Artificial General Intelligence. Springer.Google Scholar

  • Goertzel, B., and Pitt, J. 2012. Nine Ways to Bias Open-Source AGI Toward Friendliness. Journal of Evolution and Technology 22:1.Google Scholar

  • Goertzel, B., and Wigmore, J. 2011. Cognitive Synergy Is Tricky. Chinese Journal of Mind and Computation.Google Scholar

  • Goertzel, B.; Lian, R.; Arel, I.; de Garis, H.; and Chen, S. 2010a. A world survey of artificial brain projects, Part II: Biologically inspired cognitive architectures. Neurocomputing 74(1):30-49.CrossrefGoogle Scholar

  • Goertzel, B.; Pennachin, C.; Araujo, S.; Silva, F.; Queiroz, M.; Lian, R.; Silva, W.; Ross, M.; Vepstas, L.; and Senna, A. 2010b. A general intelligence oriented architecture for embodied natural language processing. In 3d Conference on Artificial General Intelligence (AGI-2010). Atlantis Press.Google Scholar

  • Goertzel, B.; Pitt, J.; Wigmore, J.; Geisweiller, N.; Cai, Z.; Lian, R.; Huang, D.; and Yu, G. 2011. Cognitive Synergy between Procedural and Declarative Learning in the Control of Animated and Robotic Agents Using the OpenCogPrime AGI Architecture. In Proceedings of AAAI-11. Google Scholar

  • Goertzel, B.; Ikl´e, M.; and Wigmore, J. 2012. The Architecture of Human-Like General Intelligence. In Theoretical Foundations of Artificial General Intelligence. Springer. 123-144.Google Scholar

  • Goertzel, B. 2009. OpenCogPrime: A cognitive synergy based architecture for artificial general intelligence. In Proceedings of ICCI’09: 8th IEEE International Conference on Cognitive Informatics, 60-68. IEEE.Google Scholar

  • Goertzel, B. 2010. Toward a formal characterization of real-world general intelligence. In Proceedings of the Third Conference on Artificial General Intelligence, 19-24.Google Scholar

  • Goertzel, B. 2014. Artificial General Intelligence. Japanese Artificial Intelligence Society Magazine, 2014-1.Google Scholar

  • Gregory, R. J. 2004. Psychological testing: History, principles, and applications. Allyn & Bacon.Google Scholar

  • Gubrud, M. A. 1997. Nanotechnology and international security. In Fifth Foresight Conference on Molecular Nanotechnology, 1.Google Scholar

  • Hammer, B., and Hitzler, P. 2007. Perspectives of neural-symbolic integration, volume 77. Springer.Google Scholar

  • Han, J.; Zeng, S.; Tham, K.; Badgero, M.; and Weng, J. 2002. Dav: A humanoid robot platform for autonomous mental development. In Development and Learning, 2002. Proceedings. The 2nd International Conference on, 73-81. IEEE.Google Scholar

  • Hawkins, J., and Blakeslee, S. 2007. On intelligence. Macmillan.Google Scholar

  • Hayes, P., and Ford., K. 1995. Turing Test Considered Harmful. IJCAI-14.Google Scholar

  • Hern´andez-Orallo, J., and Dowe, D. L. 2010. Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18):1508-1539.Google Scholar

  • Hibbard, B. 2012. Avoiding unintended AI behaviors. In Artificial General Intelligence. Springer. 107-116.Google Scholar

  • Horwitz, B.; Friston, K. J.; and Taylor, J. G. 2000. Neural modeling and functional brain imaging: an overview. Neural networks 13(8):829-846.Google Scholar

  • Hutter, M. 2005. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer.Google Scholar

  • Hutter, M. 2006. Human Knowledge Compression Contest. http://prize.hutter1.net/.Google Scholar

  • Izhikevich, E. M., and Edelman, G. M. 2008. Large-scale model of mammalian thalamocortical systems. Proc. of the national academy of sciences 105(9):3593-3593.Google Scholar

  • Jilk, D. J., and Lebiere, C. 2008. SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence 20:197-218.Google Scholar

  • Jurafsky, D., and James, H. 2000. Speech and language processing: An introduction to natural language processing, computational linguistics, and speech. Google Scholar

  • Just, M. A., and Varma, S. 2007. The organization of thinking: What functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive, Affective, and Behavioral Neuroscience 7:153-191.Google Scholar

  • Kaplan, F. 2008. Neurorobotics: an experimental science of embodiment. Frontiers in neuroscience 2(1):22.Google Scholar

  • Koza, J. R. 1992. Genetic programming: on the programming of computers by means of natural selection, volume 1. MIT press.Google Scholar

  • Krichmar, J. L., and Edelman, G. M. 2006. Principles underlying the construction of brain-based devices. In Proceedings of AISB, volume 6, 37-42.Google Scholar

  • Kurzweil, R. 2005. The singularity is near: When humans transcend biology. Penguin.Google Scholar

  • Laird, J. E.; Wray, R.; Marinier, R.; and Langley, P. 2009. Claims and challenges in evaluating human-level intelligent systems. In Proceedings of the Second Conference on Artificial General Intelligence, 91-96.Google Scholar

  • Laird, J. 2012. The Soar cognitive architecture. MIT Press.Google Scholar

  • Langley, P. 2005. An adaptive architecture for physical agents. In Proceedings of the 2005Google Scholar

  • IEEE/WIC/ACM International Conference on Web Intelligence, 18-25. IEEE.Google Scholar

  • Laud, A., and Dejong, G. 2003. The influence of reward on the speed of reinforcement learning. Proc. of the 20th International Conf. on Machine Learning.Google Scholar

  • Le, Q. V. 2013. Building high-level features using large scale unsupervised learning. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8595-8598. IEEE.Google Scholar

  • Legg, S., and Hutter, M. 2007a. A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications 157:17.Google Scholar

  • Legg, S., and Hutter, M. 2007b. Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4):391-444.CrossrefGoogle Scholar

  • Legg, S., and Veness, J. 2013. An approximation of the universal intelligence measure. In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Springer. 236-249.Google Scholar

  • Lenat, D. B., and Guha, R. V. 1989. Building large knowledge-based systems; representation and inference in the Cyc project. Addison-Wesley Longman Publishing Co., Inc.Google Scholar

  • Li, G.; Lou, Z.; Wang, L.; Li, X.; and Freeman, W. J. 2005. Application of chaotic neural model based on olfactory system on pattern recognitions. In Advances in Natural Computation. Springer. 378-381.Google Scholar

  • Li, L.; Walsh, T.; and Littman, M. 2006. Towards a unified theory of state abstraction for MDPs. Proc. of the ninth international symposium on AI and mathematics. Google Scholar

  • Markram, H. 2006. The blue brain project. Nature Reviews Neuroscience 7(2):153-160.Google Scholar

  • Metta, G.; Sandini, G.; Vernon, D.; Natale, L.; and Nori, F. 2008. The iCub humanoid robot: an open platform for research in embodied cognition. In Proceedings of the 8th workshop on performance metrics for intelligent systems, 50-56. ACM.Google Scholar

  • Modayil, J., and Kuipers, B. 2007. Autonomous development of a grounded object ontology by a learning robot. In Proceedings of the national conference on Artificial intelligence, volume 22, 1095. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Google Scholar

  • Mugan, J., and Kuipers, B. 2008. Towards the application of reinforcement learning to undirected developmental learning. International Conf. on Epigenetic Robotics.Google Scholar

  • Mugan, J., and Kuipers, B. 2009. Autonomously Learning an Action Hierarchy Using a Learned Qualitative State Representation. In IJCAI, 1175-1180.Google Scholar

  • Muggleton, S. 1991. Inductive logic programming. New generation computing 8(4):295-318.Google Scholar

  • Nestor, A., and Kokinov, B. 2004. Towards Active Vision in the DUAL Cognitive Architecture. International Journal on Information Theories and Applications 11.Google Scholar

  • Nilsson, N. J. 2005. Human-level artificial intelligence? Be serious! AI magazine 26(4):68.Google Scholar

  • Nilsson, N. J. 2007. The physical symbol system hypothesis: status and prospects. In 50 years of artificial intelligence. Springer. 9-17.Google Scholar

  • Oudeyer, P.-Y., and Kaplan, F. 2006. Discovering communication. Connection Science 18(2):189-206.Google Scholar

  • Pfeifer, R., and Bongard, J. 2007. How the body shapes the way we think: a new view of intelligence. MIT press.Google Scholar

  • Reeke Jr, G. N.; Sporns, O.; and Edelman, G. M. 1990. Synthetic neural modeling: theDarwin’series of recognition automata. Proceedings of the IEEE 78(9):1498-1530.CrossrefGoogle Scholar

  • Richardson, M., and Domingos, P. 2006. Markov logic networks. Machine learning 62(1-2):107-136.Google Scholar

  • Rosbe, J.; Chong, R. S.; and Kieras, D. E. 2001. Modeling with Perceptual and Memory Constraints: An EPIC-Soar Model of a Simplified Enroute Air Traffic Control Task. SOAR Technology Inc. Report.Google Scholar

  • Russell, S. J., and Norvig, P. 2010. Artificial intelligence: a modern approach. Prentice Hall.Google Scholar

  • Samsonovich, A. V. 2010. Toward a Unified Catalog of Implemented Cognitive Architectures. BICA 221:195-244.Google Scholar

  • Schmidhuber, J. 1991a. Curious model-building control systems.. Proc. International Joint Conf. on Neural Networks. Google Scholar

  • Schmidhuber, J. 1991b. A possibility for implementing curiosity and boredom in model-building neural controllers. Proc. of the International Conf. on Simulation of Adaptive Behavior: From Animals to Animats.Google Scholar

  • Schmidhuber, J. 1995. Reinforcement-driven information acquisition in non-deterministic environments. Proc. ICANN’95.Google Scholar

  • Schmidhuber, J. 2003. Exploring the predictable. In Advances in evolutionary computing. Springer. 579-612.Google Scholar

  • Schmidhuber, J. 2006. Godel machines: Fully Self-Referential Optimal Universal Self-Improvers. In Goertzel, B., and Pennachin, C., eds., Artificial General Intelligence. 119-226.Google Scholar

  • Searle, J. R. 1980. Minds, brains, and programs. Behavioral and brain sciences 3(03):417-424.Google Scholar

  • Seth Baum, B. G., and Goertzel, T. 2011. Technological Forecasting and Social Change. Technological Forecasting and Social Change.Google Scholar

  • Shapiro, S. C.; Rapaport,W. J.; Kandefer, M.; Johnson, F. L.; and Goldfain, A. 2007. Metacognition in SNePS. AI Magazine 28(1):17.Google Scholar

  • Shastri, L., and Ajjanagadde, V. 1993. From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony. Behavioral and brain sciences 16(3):417-451.Google Scholar

  • Silver, R.; Boahen, K.; Grillner, S.; Kopell, N.; and Olsen, K. L. 2007. Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools. The Journal of Neuroscience 27(44):11807-11819.CrossrefGoogle Scholar

  • Sloman, A. 2001. Varieties of affect and the cogaff architecture schema. In Proceedings of the AISB01 symposium on emotions, cognition, and affective computing. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour.Google Scholar

  • Socher, R.; Huval, B.; Bath, B. P.; Manning, C. D.; and Ng, A. Y. 2012. Convolutional-Recursive Deep Learning for 3D Object Classification. In NIPS, 665-673.Google Scholar

  • Solomonoff, R. J. 1964a. A formal theory of inductive inference. Part I. Information and control 7(1):1-22.Google Scholar

  • Solomonoff, R. J. 1964b. A formal theory of inductive inference. Part II. Information and control 7(2):224-254.Google Scholar

  • Spearman, C. 1904. General Intelligence, Objectively Determined and Measured. The American Journal of Psychology 15(2):201-292.CrossrefGoogle Scholar

  • Sun, R., and Zhang, X. 2004. Top-down versus bottom-up learning in cognitive skill acquisition. Cognitive Systems Research 5(1):63-89.Google Scholar

  • Taylor, M. E.; Kuhlmann, G.; and Stone, P. 2008. Transfer Learning and Intelligence: an Argument and Approach. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS 171:326. Google Scholar

  • Terman, L. M. 1915. The mental hygiene of exceptional children. The Pedagogical Seminary 22(4):529-537.CrossrefGoogle Scholar

  • Thrun, S., and Mitchell, T. 1995. Lifelong robot learning. Robotics and Autonomous Systems.Google Scholar

  • Turing, A. M. 1950. Computing machinery and intelligence. Mind 433-460.Google Scholar

  • Veness, J.; Ng, K. S.; Hutter, M.; Uther,W.; and Silver, D. 2011. A monte-carlo aixi approximation. Journal of Artificial Intelligence Research 40(1):95-142.Google Scholar

  • Wang, P. 2006. Rigid Flexibility: The Logic of Intelligence. Springer.Google Scholar

  • Wang, P. 2009. Embodiment: Does a Laptop Have a Body? In Proceedings of AGI-09, 74-179.Google Scholar

  • Weng, J., and Hwang, W.-S. 2006. From neural networks to the brain: Autonomous mental development. Computational Intelligence Magazine, IEEE 1(3):15-31.Google Scholar

  • Weng, J.; Hwang, W. S.; Zhang, Y.; Yang, C.; and Smith, R. 2000. Developmental humanoids: Humanoids that develop skills automatically. In Proc. The First IEEE-RAS International Conference on Humanoid Robots, 7-8. Citeseer.Google Scholar

  • Yudkowsky, E. 2008. Artificial intelligence as a positive and negative factor in global risk. In Global catastrophic risks. Oxford University Press. 303 Google Scholar

About the article

Accepted: 2014-03-15

Published Online: 2014-12-30

Published in Print: 2014-12-01


Citation Information: Journal of Artificial General Intelligence, ISSN (Online) 1946-0163, DOI: https://doi.org/10.2478/jagi-2014-0001.

Export Citation

© by Ben Goertzel. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Gilberto Marzano and Alessandro Novembre
Procedia Computer Science, 2017, Volume 104, Page 146

Comments (0)

Please log in or register to comment.
Log in