Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial General Intelligence

The Journal of the Artificial General Intelligence Society

3 Issues per year

Open Access
See all formats and pricing
More options …

Choosing the Right Path: Image Schema Theory as a Foundation for Concept Invention

Maria M. Hedblom / Oliver Kutz / Fabian Neuhaus
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/jagi-2015-0003


Image schemas are recognised as a fundamental ingredient in human cognition and creative thought. They have been studied extensively in areas such as cognitive linguistics. With the goal of exploring their potential role in computational creative systems, we here study the viability of the idea to formalise image schemas as a set of interlinked theories. We discuss in particular a selection of image schemas related to the notion of ‘path’, and show how they can be mapped to a formalised family of microtheories reflecting the different aspects of path following. Finally, we illustrate the potential of this approach in the area of concept invention, namely by providing several examples illustrating in detail in what way formalised image schema families support the computational modelling of conceptual blending.

Keywords: image schemas; grounded cognition; computational creativity; concept invention; conceptual blending


  • *. This paper is a revised and expanded version of (Hedblom, Kutz, and Neuhaus, 2015).


  • Aguilar, W., and Pérez y Pérez, R. 2015. Dev E-R: A computational model of early cognitive development as a creative process. Cognitive Systems Research 33:17–41.Google Scholar

  • Ahrens, K., and Say, A. L. 1999. Mapping Image Schemas and Traslating Metaphors. In Proceedings of Pacific Asia Conference on Language, Information and Computation, 1–8.Google Scholar

  • Allen, J., and Hayes, P. 1985. A Common-Sense Theory of Time. In Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI-85), 528–531.Google Scholar

  • Barsalou, L. W. 2008. Grounded cognition. Annual review of psychology 59:617–645.CrossrefGoogle Scholar

  • Bennett, B., and Cialone, C. 2014. Corpus Guided Sense Cluster Analysis: a methodology for ontology development (with examples from the spatial domain). In Garbacz, P., and Kutz, O., eds., 8th International Conference on Formal Ontology in Information Systems (FOIS), volume 267 of Frontiers in Artificial Intelligence and Applications, 213–226. IOS Press.Google Scholar

  • Blackburn, P.; de Rijke, M.; and Venema, Y. 2001. Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.Google Scholar

  • Boroditsky, L. 2000. Metaphoric structuring: Understanding time through spatial metaphors. Cognition 75(1):1–28.CrossrefGoogle Scholar

  • Brugman, C., and Lakoff, G. 1988. Cognitive Topology and Lexical Networks. In Stephen Small, Gary Cottrell, M. T., ed., Lexical ambiguity resolution. 477–508.Google Scholar

  • Chrisley, R. 2003. Embodied artificial intelligence. Artificial Intelligence 149:131–150.Google Scholar

  • Clausner, T. C., and Croft, W. 1999. Domains and image schemas. Cognitive Linguistics 10(1):1–31.CrossrefGoogle Scholar

  • Cohn, A. G., and Renz, J. 2007. Qualitative Spatial Representation and Reasoning. In van Harmelen et al., F., ed., Handbook of Knowledge Representation. Oxford: Elsevier. 551–596.Google Scholar

  • Davidson, D. 1967. The logical form of action sentences. In Rescher, N., ed., The logic of decision and action. 81–94.Google Scholar

  • Fauconnier, G., and Turner, M. 1998. Conceptual Integration Networks. Cognitive Science 22(2):133–187.CrossrefGoogle Scholar

  • Fauconnier, G., and Turner, M. 2003. The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books.Google Scholar

  • Feldman, J., and Narayanan, S. 2004. Embodied meaning in a neural theory of language. Brain and Language 89(2):385–392.Google Scholar

  • Forbus, K.; Falkenhainer, B.; and Gentner, D. 1989. The structure-mapping engine. Artificial Intelligence 41:1–63.Google Scholar

  • Gallese, V., and Lakoff, G. 2005. The Brain’s concepts: the role of the Sensory-motor system in conceptual knowledge. Cognitive neuropsychology 22(3):455–79.CrossrefGoogle Scholar

  • Gärdenfors, P. 2007. Embodiment in Cognition and Culture, volume 71 of Advances in Consciousness Research. John Benjamins Publishing Company. chapter Cognitive semantics and image schemas with embodied forces, 57–76.Google Scholar

  • Gentner, D. 1983. Structure mapping: A theoretical framework for analogy. Cognitive Science 7(2):155–170.CrossrefGoogle Scholar

  • Gibson, J. J. 1977. The theory of affordances, in Perceiving, Acting, and Knowing. Towards an Ecological Psychology. In Shaw, R., and Bransford, J., eds., Perceiving, Acting, and Knowing: Toward an Ecological Psychology. Hillsdale: NJ: Lawrence Erlbaum. 67–82.Google Scholar

  • Goguen, J. A., and Harrell, D. F. 2010. Style: A Computational and Conceptual Blending-Based Approach. In Argamon, S., and Dubnov, S., eds., The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning. Berlin: Springer. 147–170.Google Scholar

  • Goldin, G. A. 2001. Counting on the metaphorical. Nature 413(6851):18–19.Google Scholar

  • Grüninger, M.; Hahmann, T.; Hashemi, A.; Ong, D.; and Ozgovde, A. 2012. Modular First-Order Ontologies Via Repositories. Applied Ontology 7(2):169–209.Google Scholar

  • Hedblom, M. M.; Kutz, O.; and Neuhaus, F. 2014. On the cognitive and logical role of image schemas in computational conceptual blending. In Proceedings of the 2nd International Workshop on Artificial Intelligence and Cognition (AIC-2014), Torino, Italy, November 26th–27th, volume Volume 1315 of CEUR-WS.Google Scholar

  • Hedblom, M. M.; Kutz, O.; and Neuhaus, F. 2015. Image Schemas as Families of Theories. In Besold, T. R.; Kühnberger, K.-U.; Schorlemmer, M.; and Smaill, A., eds., Proceedings of the Workshop “Computational Creativity, Concept Invention, and General Intelligence” 2015, volume 2 of Publications of the Institute of Cognitive Science, 19–33. Institute of Cognitive Science.Google Scholar

  • Johanson, M., and Papafragou, A. 2014. What does children’s spatial language reveal about spatial concepts? Evidence from the use of containment expressions. Cognitive science 38(5):881–910.CrossrefGoogle Scholar

  • Johnson, M. 1987. The Body in the Mind. The Bodily Basis of Meaning, Imagination, and Reasoning. The University of Chicago Press.Google Scholar

  • Kamp, H. 1979. Instants, events and temporal discourse. In Bäuerle, R.; Schwarze, C.; and von Stechow, A., eds., Semantics from Different Points of View. Springer, Berlin. 376–417.Google Scholar

  • Knauff, M.; Rauh, R.; and Renz, J. 1997. A cognitive assessment of topological spatial relations: Results from an empirical investigation. In Hirtle, S. C., and Frank, A. U., eds., Spatial Information Theory: A Theoretical Basis for GIS, volume 1329 of Lecture Notes in Computer Science. Springer. 193–206.Google Scholar

  • Koestler, A. 1964. The Act of Creation. Macmillan.Google Scholar

  • Kövecses, Z. 2010. Metaphor:A Practical Introduction. Oxford University Press, USA.Google Scholar

  • Kuhn, W. 2002. Modeling the Semantics of Geographic Categories through Conceptual Integration. In Proceedings of GIScience 2002, 108–118. Springer.Google Scholar

  • Kuhn, W. 2007. An Image-Schematic Account of Spatial Categories. In Winter, S.; Duckham, M.; Kulik, L.; and Kuipers, B., eds., Spatial Information Theory, volume 4736 of Lecture Notes in Computer Science. Springer. 152–168.Google Scholar

  • Kutz, O.; Mossakowski, T.; Hois, J.; Bhatt, M.; and Bateman, J. 2012. Ontological Blending in DOL. In Besold, T.; Kühnberger, K.-U.; Schorlemmer, M.; and Smaill, A., eds., Computational Creativity, Concept Invention, and General Intelligence, Proceedings of the 1st International Workshop C3GI@ECAI, volume 01-2012. Montpellier, France: Publications of the Institute of Cognitive Science, Osnabrück.Google Scholar

  • Kutz, O.; Bateman, J.; Neuhaus, F.; Mossakowski, T.; and Bhatt, M. 2014a. E pluribus unum: Formalisation, Use-Cases, and Computational Support for Conceptual Blending. In Besold, T. R.; Schorlemmer, M.; and Smaill, A., eds., Computational Creativity Research: Towards Creative Machines, Thinking Machines. Atlantis/Springer.Google Scholar

  • Kutz, O.; Neuhaus, F.; Mossakowski, T.; and Codescu, M. 2014b. Blending in the Hub—Towards a collaborative concept invention platform. In Proceedings of the 5th International Conference on Computational Creativity.Google Scholar

  • Kutz, O.; Mossakowski, T.; and Lücke, D. 2010. Carnap, Goguen, and the Hyperontologies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica Universalis 4(2):255–333. Special Issue on ‘Is Logic Universal?’.CrossrefGoogle Scholar

  • Lakoff, G., and Johnson, M. 1999. Philosophy in the Flesh. Basic Books.Google Scholar

  • Lakoff, G., and Núñez, R. 2000. Where Mathematics Comes from: How the Embodied Mind Brings Mathematics Into Being. New York: Basic Books.Google Scholar

  • Lakoff, G. 1987. Women, Fire, and Dangerous Things. What Categories Reveal about the Mind. The University of Chicago Press.Google Scholar

  • Louwerse, M. M., and Jeuniaux, P. 2010. The linguistic and embodied nature of conceptual processing. Cognition 114(1):96–104.CrossrefGoogle Scholar

  • Mandler, J. M., and Pagán Cánovas, C. 2014. On defining image schemas. Language and Cognition 0:1–23.Google Scholar

  • Mandler, J. M. 1992. How to build a baby: II. Conceptual primitives. Psychological review 99(4):587–604.CrossrefGoogle Scholar

  • Mandler, J. M. 2004. The Foundations of Mind : Origins of Conceptual Thought: Origins of Conceptual Though. New York: Oxford University Press.Google Scholar

  • Mandler, J. M. 2008. On the Birth and Growth of Concepts. Philosophical Psychology 21(2):207–230.CrossrefGoogle Scholar

  • Menzel, C. 2011. Knowledge representation, the World Wide Web, and the evolution of logic. Synthese 182:269–295.Google Scholar

  • Morgenstern, L. 2001. Mid-Sized Axiomatizations of Commonsense Problems: A Case Study in Egg Cracking. Studia Logica 67:333–384.CrossrefGoogle Scholar

  • Mossakowski, T.; Kutz, O.; Codescu, M.; and Lange, C. 2013. The Distributed Ontology, Modeling and Specification Language. In Del Vescovo, C.; Hahmann, T.; Pearce, D.; and Walther, D., eds., Proceedings of the 7th International Workshop on Modular Ontologies (WoMO-13), volume 1081. CEUR-WS.Google Scholar

  • Mossakowski, T.; Codescu, M.; Neuhaus, F.; and Kutz, O. 2015. The Road to Universal Logic–Festschrift for 50th birthday of Jean-Yves Beziau, Volume II. Studies in Universal Logic. Birkhäuser. chapter The distributed ontology, modelling and specification language - DOL.Google Scholar

  • Mossakowski, T.; Kutz, O.; and Codescu, M. 2014. Ontohub: A semantic repository for heterogeneous ontologies. In Proc. of the Theory Day in Computer Science (DACS-2014). Satellite workshop of ICTAC-2014.Google Scholar

  • Mossakowski, T.; Lange, C.; and Kutz, O. 2012. Three Semantics for the Core of the Distributed Ontology Language. In Grüninger, M., ed., 7th International Conference on Formal Ontology in Information Systems (FOIS), Frontiers in Artificial Intelligence and Applications. IOS Press.Google Scholar

  • Mossakowski, T.; Maeder, C.; and Lüttich, K. 2007. The Heterogeneous Tool Set. In Grumberg, O., and Huth, M., eds., Tools and Algorithms for the Construction and Analysis of Systems. 13th International Conference, TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007. Proceedings, volume 4424 of Lecture Notes in Computer Science, 519–522. Springer.Google Scholar

  • Nayak, S., and Mukerjee, A. 2012. Concretizing the image schema: How semantics guides the bootstrapping of syntax. In 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics, ICDL 2012.Google Scholar

  • Oakley, T. 2010. Image Schema. In Geeraerts, D., and Cuyckens, H., eds., The Oxford Handbook of Cognitive Linguistics. Oxford: Oxford University Press. 214–235.Google Scholar

  • Ontañón, S., and Plaza, E. 2010. Amalgams: A formal approach for combining multiple case solutions. In Case-Based Reasoning. Research and Development. Springer. 257–271.Google Scholar

  • Parson, T. 1990. Events in the Semantics of English: A Study in Subatomic Semantics. MIT Press.Google Scholar

  • Pereira, F. C., and Cardoso, A. 2003. Optimality Principles for Conceptual Blending: A First Computational Approach. AISB Journal 1(4).Google Scholar

  • Prior, A. N. 1967. Past, Present and Future. Oxford: Oxford University Press.Google Scholar

  • Regier, T. 1996. The Human Semantic Potential: Spatial Language and Constrained Connectionism. The MIT Press.Google Scholar

  • Rohrer, T. 2005. Image Schemata in the Brain. In Hampe, B., and Grady, J. E., eds., From perception to meaning: Image schemas in cognitive linguistics, volume 29 of Cognitive Linguistics Research. Walter de Gruyter. 165–196.Google Scholar

  • Schiralli, M., and Sinclair, N. 2003. A Constructive Response to ‘Where Mathematics Comes From’. Educational Studies in Mathematics 52:79–91.Google Scholar

  • Schmidt, M.; Krumnack, U.; Gust, H.; and Khnberger, K.-U. 2014. Heuristic-Driven Theory Projection: An Overview. In Prade, H., and Richard, G., eds., Computational Approaches to Analogical Reasoning: Current Trends, Computational Intelligence 548. Springer-Verlag.Google Scholar

  • Schorlemmer, M.; Smaill, A.; Kühnberger, K.-U.; Kutz, O.; Colton, S.; Cambouropoulos, E.; and Pease, A. 2014. COINVENT: Towards a Computational Concept Invention Theory. In Proceedings of the 5th International Conference on Computational Creativity.Google Scholar

  • Schwering, A.; Krumnack, U.; Kühnberger, K.-U.; and Gust, H. 2009. Syntactic Principles of Heuristic-Driven Theory Projection. Cognitive Systems Research 10(3):251–269.Google Scholar

  • St. Amant, R.; Morrison, C. T.; Chang, Y.-H.; Cohen, P. R.; and Beal, C. 2006. An image schema language. In International Conference on Cognitive Modeling (ICCM), 292–297.Google Scholar

  • Tettamanti, M.; Buccino, G.; Saccuman, M. C.; Gallese, V.; Danna, M.; Scifo, P.; Fazio, F.; Rizzolatti, G.; and Perani, D. 2005. Listening to action-related sentences activates fronto-parietal motor circuits. Journal of Cognitive Neuroscience 273–281.Google Scholar

  • Turner, M. 2007. The Way We Imagine. In Roth, I., ed., Imaginative Minds - Proceedings of the British Academy. Oxford: OUP. 213–236.Google Scholar

  • Turner, M. 2014. The Origin of Ideas: Blending, Creativity, and the Human Spark. Oxford University Press.Google Scholar

  • Van Benthem, J. F. A. K. 1983. The Logic of Time. Dordrecht, Holland: D. Reidel Publishing Company.Google Scholar

  • Veale, T., and Keane, M. T. 1992. Conceptual Scaffolding: a Spatially Founded Meaning Representation for Metaphor Comprehension. Computational Intelligence 8(3):494–519.CrossrefGoogle Scholar

  • Veale, T.; Feyaerts, K.; and Forceville, C. 2013. E Unis Pluribum: Using Mental Agility to Achieve Creative Duality in Word, Image and Sound. In Creativity and the Agile Mind: A Multi-Disciplinary Study of a Multi-Faceted Phenomenon (Applications of Cognitive Linguistics). 37–57.Google Scholar

  • Vernon, D. 2014. Artificial Cognitive Systems: A Primer. MIT Press.Google Scholar

  • Voorhees, B. 2004. Embodied Mathematics: Comments on Lakoff and Núñez. Journal of Consciousness Studies 11(9):83–88.Google Scholar

  • Walton, L., and Worboys, M. 2009. An Algebraic Approach to Image Schemas for Geographic Space. In Proceedings of the 9th International Conference on Spatial Information Theory (COSIT), 357–370.Google Scholar

  • Wierzbicka, A. 1996. Semantics : Primes and Universals: Primes and Universals. Oxford University Press, UK.Google Scholar

  • Wilson, N. L., and Gibbs, R. W. 2007. Real and imagined body movement primes metaphor comprehension. Cognitive science 31(4):721–731.CrossrefGoogle Scholar

About the article

Received: 2015-08-16

Accepted: 2015-11-26

Published Online: 2015-12-30

Published in Print: 2015-12-01

Citation Information: Journal of Artificial General Intelligence, Volume 6, Issue 1, Pages 21–54, ISSN (Online) 1946-0163, DOI: https://doi.org/10.1515/jagi-2015-0003.

Export Citation

© 2015 Maria M. Hedblom et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tarek R. Besold, Maria M. Hedblom, and Oliver Kutz
Biologically Inspired Cognitive Architectures, 2017, Volume 19, Page 10
Maria M. Hedblom, Oliver Kutz, and Fabian Neuhaus
Cognitive Systems Research, 2016, Volume 39, Page 42

Comments (0)

Please log in or register to comment.
Log in