Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial General Intelligence

The Journal of the Artificial General Intelligence Society

3 Issues per year

Open Access
Online
ISSN
1946-0163
See all formats and pricing
More options …

The Sigma Cognitive Architecture and System: Towards Functionally Elegant Grand Unification

Paul S. Rosenbloom
  • Institute for Creative Technologies and Department of Computer Science, 12015 Waterfront Dr. Playa Vista, CA 90094, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abram Demski
  • Institute for Creative Technologies and Department of Computer Science, 12015 Waterfront Dr. Playa Vista, CA 90094, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Volkan Ustun
Published Online: 2017-01-23 | DOI: https://doi.org/10.1515/jagi-2016-0001

Abstract

Sigma (Σ) is a cognitive architecture and system whose development is driven by a combination of four desiderata: grand unification, generic cognition, functional elegance, and sufficient efficiency. Work towards these desiderata is guided by the graphical architecture hypothesis, that key to progress on them is combining what has been learned from over three decades’ worth of separate work on cognitive architectures and graphical models. In this article, these four desiderata are motivated and explained, and then combined with the graphical architecture hypothesis to yield a rationale for the development of Sigma. The current state of the cognitive architecture is then introduced in detail, along with the graphical architecture that sits below it and implements it. Progress in extending Sigma beyond these architectures and towards a full cognitive system is then detailed in terms of both a systematic set of higher level cognitive idioms that have been developed and several virtual humans that are built from combinations of these idioms. Sigma as a whole is then analyzed in terms of how well the progress to date satisfies the desiderata. This article thus provides the first full motivation, presentation and analysis of Sigma, along with a diversity of more specific results that have been generated during its development.

Keywords: Cognitive architecture; graphical models; cognitive system; Sigma

References

  • Anderson, J. R. 1983. The Architecture of Cognition. Cambridge, MA: Harvard University Press.Google Scholar

  • Anderson, J. R. 1990. The Adaptive Character of Thought. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar

  • Anderson, J. R. 2002. Spanning seven orders of magnitude: A challenge for cognitive modeling. Cognitive Science. 26: 85-112.Google Scholar

  • Anderson, J. R. 2007. How Can the Human Mind Occur in the Physical Universe. Oxford: Oxford University Press.Google Scholar

  • Anderson, J. R.; Bothell, D.; Byrne, M. D.; Douglass, S., Lebiere, C.; and Qi, Y. 2004. An integrated theory of the mind. Psychological Review. 111: 1036-1060.CrossrefGoogle Scholar

  • Badler, N. I. 1997. Real-time virtual humans. In Proceedings of the IEEE Workshop on Non-Rigid and Articulated Motion, 28-36.Google Scholar

  • Bach, J. 2015. Modeling motivation in MicroPsi 2. In Proceedings of the 8th Conference on Artificial General Intelligence, 3-13.Google Scholar

  • Bailey, T.; and Durrant-Whyte, H. 2006. Simultaneous localisation and mapping (SLAM): Part II State of the art. Robotics and Automation Magazine. 13: 108–117.Google Scholar

  • Bell, C. G.; and Newell, A. 1971. Computer Structures: Readings and Examples. New York, NY: McGraw-Hill.Google Scholar

  • Bengio, Y.; Ducharme, R.; Vincent, P.; and Janvin, C. 2003. A neural probabilistic language model. The Journal of Machine Learning Research. 3: 1137-1155.Google Scholar

  • Best, B.; Lebiere, C.; and Scarpinatto, C. 2002. A model of synthetic opponents in MOUT training simulations using the ACT-R cognitive architecture. In Proceedings of the Eleventh Conference on Computer Generated Forces and Behavior Representation.Google Scholar

  • Bonasso, R. P.; Firby, R. J.; Gat, E.; Kortenkamp, D.; Miller, D. P.; and Slack, M. G. 1997. Experiences with an Architecture for Intelligent Reactive Agent. Journal of Experimental and Theoretical Artificial Intelligence. 9: 237-256.Google Scholar

  • Bostrom, N. 2001. Are you living in a computer simulation? Philosophical Quarterly. 53: 243-255.CrossrefGoogle Scholar

  • Bridewell, W.; and Langley, P. 2011. A computational account of everyday abductive inference. In Proceedings of the Thirty-Third Annual Meeting of the Cognitive Science Society, 2289-2294.Google Scholar

  • Bubic, A.; von Cramon, D. Y.; and Schubotz, R. I. 2010. Prediction, cognition and the brain. Frontiers in Human Neuroscience. 4: 25.Google Scholar

  • Campbell, J.; Core, M.; Artstein, R.; Armstrong, L.; Hartholt, A.; Wilson, C.; Georgila, K.; Morbini, F.; Haynes, E.; Gomboc, D.; Birch, M.; Bobrow, J.; Chad Lane, H.; Gerten, J.; Leuski, A.; Traum, D.; Trimmer, M.; DiNinni, R.; Bosack, M.; Jones, T.; Clark, R.E.; and Yates, K.A., 2011. Developing INOTS to Support Interpersonal Skills Practice. In Proceedings of the Thirty-second Annual IEEE Aerospace Conference, 1-14.Google Scholar

  • Card, S. K.; Moran, T.P.; and Newell, A. 1983. The Psychology of Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar

  • Cassimatis, N. 2002. Polyscheme: A Cognitive Architecture for Integrating Multiple Representation and Inference Schemes. Ph.D. diss., Media Laboratory, MIT, Cambridge, Mass.Google Scholar

  • Chater, N.; Oaksford, M. 1999. Ten years of the rational analysis of cognition. Trends in Cognitive Sciences. 3: 57–65.Google Scholar

  • Chen, J.; Demski, A.; Han, T.; Morency, L-P.; Pynadath, D.; Rafidi, N.; and Rosenbloom, P. S. 2011. Fusing symbolic and decision-theoretic problem solving + perception in a graphical cognitive architecture. In Proceedings of the 2nd International Conference on Biologically Inspired Cognitive Architectures, 64-72.Google Scholar

  • Collobert, R.; and Weston, J. 2008. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th international conference on Machine learning, 160-167.Google Scholar

  • Coste-Manière, E.; and Simmons, R. G. 2000. Architecture, the backbone of robotic systems. In Proceedings of the International Conference on Robotics and Automation, 67-72.Google Scholar

  • Dancy, C. L.; Ritter, F. E.; and Berry, K. 2012. Towards adding a physiological substrate to ACT-R. In Proceedings of the 21st Conference on Behavior Representation in Modeling and Simulation, 78-85.Google Scholar

  • Deering, S. 1988. Watching the waist of the protocol hourglass. Keynote address at ICNP ‘98. de Kleer, J. 1986. An assumption-based TMS. Artificial Intelligence. 28:127–162.Google Scholar

  • Dempster, A.P.; Laird, N.M.; and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. 39: 1–38.Google Scholar

  • Derbinsky, N.; Laird, J. E.; and Smith, B. 2010. Towards efficiently supporting large symbolic declarative memories. In Proceedings of the 10th International Conference on Cognitive Modeling, 49-54.Google Scholar

  • Deutsch, D. 2011. The Beginning of Infinity: Explanations that Transform the World. London, UK: Penguin Books.Google Scholar

  • Domingos, P.; and Lowd, D. 2009. Markov Logic: An Interface Layer for Artificial Intelligence. San Raphael, CA: Morgan & Claypool.Google Scholar

  • Douglass, S.; Ball, J.; & Rodgers, S. 2009. Large declarative memories in ACT-R. In Proceedings of the 9th International Conference of Cognitive Modeling, 222-227.Google Scholar

  • Eliasmith, C. 2013. How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford: Oxford University Press.Google Scholar

  • Falkenhainer, B; Forbus, K. D.; and Gentner, D 1989. The structure-mapping engine: Algorithm and examples. Artificial Intelligence. 41: 1–63.Google Scholar

  • Fikes, R., Hart, P; and Nilsson, N. 1972. Learning and Executing Generalized Robot Plans, Artificial Intelligence. 3: 251-288.Google Scholar

  • Forbus, K. D.; and Hinrichs, T. R. 2006. Companion Cognitive Systems: A step towards human-level AI. AI Magazine. 27:83-95.Google Scholar

  • Forgy, C. L. 1982. Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence. 19: 17-37.Google Scholar

  • Frackowiak R; and Markram H. 2015. The future of human cerebral cartography: a novel approach. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 370.Google Scholar

  • Frintrop, S.; Rome, E.; and Christensen, H.I. 2010: Computational visual attention systems and their cognitive foundation: A survey. ACM Transactions on Applied Perception. 7.Google Scholar

  • Garten, J.; Sagae, K.; Ustun, V.; and Dehghani, M. 2015. Combining distributed vector representations for words. In Proceedings of the NAACL Workshop on Vector Space Modeling for NLP, 95-101.Google Scholar

  • Goertzel, B. 2014. Artificial General Intelligence: Concept, State of the Art, and Future Prospects. Journal of Artificial General Intelligence. 5:1-46.Google Scholar

  • Goertzel, B.; Pennachin, C.; and Geisweiller, N. 2014. Engineering General Intelligence. Amsterdam: Atlantis Press.Google Scholar

  • Goodman, N. D.; Mansinghka, V. K.; Roy, D.; Bonawitz, K.; and Tenenbaum, J. B. 2008. Church: a language for generative models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, 220-229.Google Scholar

  • Hartholt, A.; Traum, D. Marsella, S. C.; Shapiro, A.; Stratou, G.; Leuski, A.; Morency, L.-P.; and Gratch, J. 2013. All together now: Introducing the Virtual Human Toolkit. In Proceedings of the 13th International Conference on Intelligent Virtual Agents, 368-381.Google Scholar

  • Hutter, M. 2005. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Berlin: Springer-Verlag.Google Scholar

  • Itti, L.; and Baldi, P.F. 2006. Bayesian surprise attracts human attention. In Advances in Neural Information Processing Systems 18, 547-554.Google Scholar

  • Itti, L.; and Borji, A. 2013. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 35: 185-207.Google Scholar

  • Jilk, D. J.; Lebiere, C.; O’Reilly, R. C. and Anderson, J. R. 2008. SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence. 20: 197-218.Google Scholar

  • Jones, M. N.; and Mewhort, D. J. 2007. Representing word meaning and order information in a composite holographic lexicon. Psychological review. 114: 1-37.CrossrefGoogle Scholar

  • Jordan, M. I.; and Sejnowski, T. J. 2001. Graphical Models: Foundations of Neural Computation. Cambridge, MA: MIT Press.Google Scholar

  • Joshi, H.; Rosenbloom, P. S.; and Ustun, V. 2014. Isolated word recognition in the Sigma cognitive architecture. Biologically Inspired Cognitive Architectures. 10: 1-9.Google Scholar

  • Kahneman, D. 2011. Thinking Fast and Slow. New York, NY: Farrar, Straus and Giroux.Google Scholar

  • Kieras, D. E.; and Meyer, D. E. 1997. An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12: 391-438.Google Scholar

  • Koller, D.; and Friedman, N. 2009. Probabilistic Graphical Models: Principles and Techniques. Cambridge, MA: MIT Press.Google Scholar

  • Kopp, S.; Krenn, B.; Marsella, S.; Marshall, A. N.; Pelachaud C.; Pirker, H.; and Vilhjálmsson, H. 2006. Towards a common framework for multimodal generation: The behavior markup language. In Proceedings of the 6th International Conference on Intelligent Virtual Agents, 205-217.Google Scholar

  • Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory. 47: 498-519.Google Scholar

  • Laird, J. E. 2012. The Soar Cognitive Architecture. Cambridge, MA: MIT Press.Google Scholar

  • Laird, J E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar: An Architecture for General Intelligence. Artificial Intelligence. 33: 1-64.Google Scholar

  • Laird, J. E.; and Rosenbloom, P. S. 1990. Integrating execution, planning, and learning in Soar for external environments, Proceedings of the Eighth National Conference on Artificial Intelligence,1022-1029.Google Scholar

  • Laird, J. E.; Rosenbloom, P. S.; and Newell, A. 1986. Chunking in Soar: The anatomy of a general learning mechanism. Machine Learning. 1: 11-46.Google Scholar

  • Langley, P.; and Choi, D. 2006. A unified cognitive architecture for physical agents. In Proceedings of the Twenty-First AAAI Conference on Artificial Intelligence, 1469-1474.Google Scholar

  • Langley, P.; Laird, J. E.; and Rogers, S. 2009. Cognitive architectures: Research issues and challenges. Cognitive Systems Research. 10: 141-160.Google Scholar

  • Lebiere, C. 2013. Summary presentation for panel on Consensus and Outstanding Issues. AAAI 2013 Fall Symposium on Integrated Cognition.Google Scholar

  • LeCun, Y.; Bengio, Y.; and Hinton, G. E. 2015. Deep Learning. Nature. 521: 436-444.Google Scholar

  • Lenat, D.; and Guha, R. V. 1990. Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Reading, MA: Addison-Wesley.Google Scholar

  • Madl, T.; and Franklin, S. 2012. A LIDA-based Model of the Attentional Blink. In Proceedings of the 11th International Conference on Cognitive Modeling, 283-288.Google Scholar

  • Maes, P.; and Nardi, D. eds. 1988. Meta-Level Architectures and Reflection. Amsterdam: North Holland.Google Scholar

  • Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, CA: W. H. Freeman.Google Scholar

  • Marsella, S.; and Gratch, J. 2009. EMA: A Process Model of Appraisal Dynamics. Journal of Cognitive Systems Research. 10: 70-90.Google Scholar

  • McCallum, A.; Rohanemanesh, K.; Wick, M.; Schultz, K.; and Singh, S. 2008. FACTORIE: Efficient probabilistic programming via imperative declarations of structure, inference and learning. In Proceedings of the NIPS workshop on Probabilistic Programming.Google Scholar

  • Meyer, D. E.; and Kieras, D. E. 1997. A computational theory of executive control processes and human multiple-task performance: Part 1. Basic Mechanisms. Psychological Review. 104: 3-65.CrossrefGoogle Scholar

  • Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Efficient estimation of word representations in vector space. In Proceedings of the International Conference on Learning Representations.Google Scholar

  • Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.; and Kolobov, A. 2007. BLOG: Probabilistic models with unknown objects. In Introduction to Statistical Relational Learning eds. L. Getoor and B. Taskar. Cambridge, MA: MIT Press.Google Scholar

  • Mnih, A.; and Kavukcuoglu, K. 2013. Learning word embeddings efficiently with noise-contrastive estimation. In Advances in Neural Information Processing Systems, 2265-2273.Google Scholar

  • Minsky, M. 1986. The Society of Mind. New York, NY: Simon & Schuster.Google Scholar

  • Moors, A.; Ellsworth, P.C.; Scherer, K.R.; and Frijda, N.H. 2013. Appraisal theories of emotion: State of the art and future development. Emotion Review. 5: 119-124.CrossrefGoogle Scholar

  • Murphy, K. 2002. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. diss., Computer Science Division, UC Berkeley, Berkeley, Calif.Google Scholar

  • Murphy, R. R. 2000. Introduction to AI Robotics. Cambridge, MA: MIT Press.Google Scholar

  • Newell, A. 1990. Unified Theories of Cognition. Cambridge, MA: Harvard University Press.Google Scholar

  • Newell, A.; Shaw, J. C.; and Simon, H. A. 1959. Report on a general problem-solving program. In Proceedings of the International Conference on Information Processing, 256-264.Google Scholar

  • Newell, A.; Yost, G. R.; Laird, J. E.; Rosenbloom, P. S.; and Altmann, E. 1991. Formulating the problem space computational model. In CMU Computer Science: A 25th Anniversary Commemorative ed. R. F. Rashid. New York, NY: ACM Press/Addison-Wesley.Google Scholar

  • Ng, A. Y.; and Russell, S. J. 2000. Algorithms for inverse reinforcement learning. In Proceedings of the 17th International Conference on Machine Learning, 663–670.Google Scholar

  • Niv, Y. 2009. Reinforcement learning in the brain. The Journal of Mathematical Psychology. 53: 139-154.Google Scholar

  • Oaksford, M.; and Chater, N. 2007. Bayesian Rationality: The Probabilistic Approach to Human Reasoning. Oxford: Oxford University Press.Google Scholar

  • O’Connor, T.; and Wong, H. Y. 2015. Emergent properties. In The Stanford Encyclopedia of Philosophy (Summer 2015 Edition), ed. E. N. Zalta.Google Scholar

  • O’Reilly, R. C.; and Munakata, Y. 2000. Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press.Google Scholar

  • Ortony, A.; Norman, D. A.; and Revelle, W. 2005. Affect and Proto-affect in effective functioning. In Who Needs Emotions? The Brain Meets the Machine : eds. J. M. Fellous and M. A. Arbib. New York, NY: Oxford University Press.Google Scholar

  • Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA: Morgan Kaufman.Google Scholar

  • Pynadath, D. V.; and Marsella, S. C. 2005. PsychSim: Modeling Theory of Mind with decision-theoretic agents. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, 1181-1186.Google Scholar

  • Pynadath, D. V.; Rosenbloom, P. S.; and Marsella, S. C. 2014. Reinforcement learning for adaptive Theory of Mind in the Sigma cognitive architecture. In Proceedings of the 7th Annual Conference on Artificial General Intelligence, 143-154.Google Scholar

  • Pynadath, D. V.; Rosenbloom, P. S.; Marsella, S. C.; and Li, L. 2013. Modeling two-player games in the Sigma graphical cognitive architecture. In Proceedings of the 6th Conference on Artificial General Intelligence, 98-108. Berlin: Springer.Google Scholar

  • Rosenbloom, P. S. 1982. A world-championship-level Othello program. Artificial Intelligence. 19: 279-320.Google Scholar

  • Rosenbloom, P. S. 2006. A cognitive odyssey: From the power law of practice to a general learning mechanism and beyond. Tutorials in Quantitative Methods for Psychology. 2: 43-51.Google Scholar

  • Rosenbloom, P. S. 2009. Towards a new cognitive hourglass: Uniform implementation of cognitive architecture via factor graphs. In Proceedings of the 9th International Conference on Cognitive Modeling, 116-121.Google Scholar

  • Rosenbloom, P. S. 2010. Combining procedural and declarative knowledge in a graphical architecture. In Proceedings of the 10th International Conference on Cognitive Modeling, 205-210.Google Scholar

  • Rosenbloom, P. S. 2011a. Rethinking cognitive architecture via graphical models. Cognitive Systems Research. 12: 198-209.Google Scholar

  • Rosenbloom, P. S. 2011b. Mental imagery in a graphical cognitive architecture. In Proceedings of the 2nd International Conference on Biologically Inspired Cognitive Architectures, 314-323.Google Scholar

  • Rosenbloom, P. S. 2011c. From memory to problem solving: Mechanism reuse in a graphical cognitive architecture. In Proceedings of the 4th Conference on Artificial General Intelligence, 143-152.Google Scholar

  • Rosenbloom, P. S. 2012a. Deconstructing reinforcement learning in Sigma. In Proceedings of the 5th Conference on Artificial General Intelligence, 262-271. Berlin: Springer.Google Scholar

  • Rosenbloom, P. S. 2012b. Extending mental imagery in Sigma. In Proceedings of the 5th Conference on Artificial General Intelligence, 272-281.Google Scholar

  • Rosenbloom, P. S. 2012c. Towards a 50 msec cognitive cycle in a graphical architecture. In Proceedings of the 11th International Conference on Cognitive Modeling, 305-310.Google Scholar

  • Rosenbloom, P. S. 2014. Deconstructing episodic learning and memory in Sigma. In Proceedings of the 36th Annual Conference of the Cognitive Science Society, 1317-1322.Google Scholar

  • Rosenbloom, P. S. 2015. Supraarchitectural capability integration: From Soar to Sigma. In Proceedings of the 13th International Conference on Cognitive Modeling, 67-68.Google Scholar

  • Rosenbloom, P. S.; Demski, A.; Han, T.; and Ustun, V. 2013. Learning via gradient descent in Sigma. In Proceedings of the 12th International Conference on Cognitive Modeling, 35-40.Google Scholar

  • Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2015. Efficient message computation in Sigma’s graphical architecture. Biologically Inspired Cognitive Architectures. 11: 1-9.Google Scholar

  • Rosenbloom, P. S.; Demski, A.; and Ustun, V. 2016. Rethinking Sigma’s graphical architecture while extending it to neural networks. In Proceedings of the 9th Conference on Artificial General Intelligence.Google Scholar

  • Rosenbloom, P. S.; Gratch, J.; and Ustun, V. 2015. Towards emotion in Sigma: From Appraisal to Attention. In Proceedings of the 8th Conference on Artificial General Intelligence, 142-151.Google Scholar

  • Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1988. Meta-levels in Soar. In Meta-Level Architectures and Reflection eds. P. Maes and D. Nardi. Amsterdam, Netherlands: North Holland.Google Scholar

  • Rosenbloom, P. S.; Lee, S.; and Unruh, A. 1990. Responding to impasses in memory-driven behavior: A framework for planning, Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling, and Control, 181-191.Google Scholar

  • Rosenbloom, P. S.; Laird, J. E.; and Newell, A. 1987. Knowledge level learning in Soar. In Proceedings of Sixth National Conference on Artificial Intelligence, 499-504.Google Scholar

  • Rosenbloom, P. S.; Laird, J. E.; and Newell, A. eds. 1993. The Soar Papers: Research on Integrated Intelligence. Cambridge, MA: MIT Press.Google Scholar

  • Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986. Learning representations by back-propagating errors. Nature. 323: 533-536.Google Scholar

  • Russell, S.; Binder, J.; Koller, D.; and Kanazawa, K. 1995. Local learning in probabilistic networks with hidden variables. In Proceedings of the 14th International Joint Conference on AI, 1146-1152.Google Scholar

  • Schneider, W.; and Shiffrin, R. M. 1977. Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review. 84: 1-66.CrossrefGoogle Scholar

  • Shapiro, A. 2011. Building a character animation system. In Proceedings of the 4th International Conference on Motion in Games, 98-109.Google Scholar

  • Simon, H. A. 1956. Rational choice and the structure of the environment. Psychological Review. 63: 129–138.CrossrefGoogle Scholar

  • Singla, P.; and Domingos, P. 2008. Lifted first-order belief propagation. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 1094-1099.Google Scholar

  • Sun, R. 2006. The CLARION cognitive architecture: Extending cognitive modeling to social simulation In Cognition and Multi-Agent Interaction ed. R. Sun. New York, NY: Cambridge University Press.Google Scholar

  • Sun, R.; and Wilson, N. 2010. Motivational processes within the perception-action cycle. Perception-Action Cycle: Models, Architectures, and Hardware. New York, NY: Springer.Google Scholar

  • Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.Google Scholar

  • Swartout, W. 2010. Lessons learned from virtual humans. AI Magazine. 31: 9-20.Google Scholar

  • Tambe, M.; and Rosenbloom, P. S. 1994. Investigating production system representations for non-combinatorial match. Artificial Intelligence. 68: 155-199.Google Scholar

  • Turney, P. D.; and Pantel, P. 2010. From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research. 37: 141-188.Google Scholar

  • Ustun, V; and Rosenbloom, P. S. 2015. Towards adaptive, interactive virtual humans in Sigma. In Proceedings of the 15th International Conference on Intelligent Virtual Agents, 98-108.Google Scholar

  • Ustun, V.; Rosenbloom, P. S.; Kim, J.; and Li, L. 2015. Building high fidelity human behavior models in the Sigma cognitive architecture. In Proceedings of the 2015 Winter Simulation Conference, 3124-3125.Google Scholar

  • Ustun, V.; Rosenbloom, P. S.; Sagae, K.; and Demski, A. 2014. Distributed vector representations of words in the Sigma cognitive architecture. In Proceedings of the 7th Annual Conference on Artificial General Intelligence, 196-207.Google Scholar

  • Veloso, M. M.; and Carbonell, J. G. 1993. Derivational analogy in Prodigy: Automating case acquisition, storage, and utilization. Machine Learning. 10: 249–278.Google Scholar

  • Veness, J.; Ng, K. S.; Hutter, M.; Uther, W.; Silver, D. 2011. A Monte-Carlo AIXI approximation. Journal of Artificial Intelligence Research. 40: 95-142Google Scholar

  • Vere, S. and Bickmore, T. 1990. A Basic Agent. Computational Intelligence. 6: 41-60.CrossrefGoogle Scholar

  • Wang, P. 2007. The logic of intelligence. In Artificial General Intelligence eds. B. Goertzel and C. Pennachin. New York, NY: Springer.Google Scholar

  • Whiten, A. ed. 1991. Natural Theories of Mind. Oxford: Basil Blackwell.Google Scholar

About the article

Published Online: 2017-01-23

Published in Print: 2016-12-01


Citation Information: Journal of Artificial General Intelligence, Volume 7, Issue 1, Pages 1–103, ISSN (Online) 1946-0163, DOI: https://doi.org/10.1515/jagi-2016-0001.

Export Citation

© 2016 Paul S. Rosenbloom et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Joaquín Pérez Marco, Francisco José Serón Arbeloa, and Eva Cerezo Bagdasari
Kybernetes, 2017, Volume 46, Number 6, Page 933
[3]
Himanshu Joshi, Paul S. Rosenbloom, and Volkan Ustun
Biologically Inspired Cognitive Architectures, 2016, Volume 18, Page 23

Comments (0)

Please log in or register to comment.
Log in