Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial Intelligence and Soft Computing Research

The Journal of Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology

4 Issues per year

Open Access
Online
ISSN
2083-2567
See all formats and pricing
More options …

Group Decision Making using Interval-Valued Intuitionistic Fuzzy Soft Matrix and Confident Weight of Experts

Sujit Das / Samarjit Kar / Tandra Pal
Published Online: 2014-12-30 | DOI: https://doi.org/10.2478/jaiscr-2014-0025

Abstract

This article proposes an algorithmic approach for multiple attribute group decision making (MAGDM) problems using interval-valued intuitionistic fuzzy soft matrix (IVIFSM) and confident weight of experts. We propose a novel concept for assigning confident weights to the experts based on cardinals of interval-valued intuitionistic fuzzy soft sets (IVIFSSs). The confident weight is assigned to each of the experts based on their preferred attributes and opinions, which reduces the chances of biasness. Instead of using medical knowledgebase, the proposed algorithm mainly relies on the set of attributes preferred by the group of experts. To make the set of preferred attributes more important, we use combined choice matrix, which is combined with the individual IVIFSM to produce the corresponding product IVIFSM. This article uses IVIFSMs for representing the experts’ opinions. IVIFSM is the matrix representation of IVIFSS and IVIFSS is a natural combination of interval-valued intuitionistic fuzzy set (IVIFS) and soft set. Finally, the performance of the proposed algorithm is validated using a case study from real life

References

  • [1] D. Molodtsov, Soft set theory - first results, Comput. Math. Appl. vol. 37, no. (4-5), pp. 19-31, 1999CrossrefGoogle Scholar

  • [2] S.R.S. Varadhan, Probability Theory, American Mathematical Society, 2001Google Scholar

  • [3] L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8, pp. 338-353, 1965CrossrefGoogle Scholar

  • [4] Z. Pawlak, Rough sets, International Journal of Computer Science, vol. 11, pp. 341-356, 1982CrossrefGoogle Scholar

  • [5] S. Kar, S. Das, P. K. Ghosh, Applications of neuro fuzzy systems: A brief review and future outline, Applied Soft Computing Journal, vol. 15, pp. 243-259, 2014CrossrefGoogle Scholar

  • [6] N. Cagman, S. Enginoglu, Soft matrix theory and its decision making, Computers and Mathematics with Applications, vol. 59, no. 10, pp. 3308-3314, 2010Google Scholar

  • [7] N. Cagman, S. Enginoglu, Soft set theory and uni- int decision making, European Journal of Operational Research, vol. 207, no. 2, pp. 848-855, 2010Web of ScienceGoogle Scholar

  • [8] F. Feng, Y. B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft set based decision making, Journal of Computational and Applied Mathematics, vol. 234, no. 1, pp. 10-20, 2010Google Scholar

  • [9] Jiang, Y. Tang, Q. Chen, An adjustable approach to intuitionistic fuzzy soft sets based decision making, Applied Mathematical Modelling, vol. 35, no. 2, pp. 824-836, 2011 10] Z. Kong, L. Gao, L. Wang, Comment on A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 540-542, 2009 CrossrefGoogle Scholar

  • [10] Z. Kong, L. Gao, L. Wang, Comment on A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 540-542, 2009Web of ScienceGoogle Scholar

  • [11] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Computers and Mathematics with Applications, vol. 44, no. (8-9), pp. 1077-1083, 2002Google Scholar

  • [12] A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, Journal of Computational and Applied Mathematics, vol. 203, no. 2, pp. 412-418, 2007Web of ScienceGoogle Scholar

  • [13] Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information, Knowledge- Based Systems, vol. 21, no. 8, pp. 941-945, 2008Google Scholar

  • [14] Z. Xiao, K. Gong, Y. Zou, A combined forecasting approach based on fuzzy soft sets, Journal of Computational and Applied Mathematics, vol. 228, no. 1, pp. 326-333, 2009Google Scholar

  • [15] J. Kalayathankal and G. S. Singh, A fuzzy soft flood alarm model, Mathematics and Computers in Simulation, vol. 80, no. 5, pp. 887-893, 2010Web of ScienceGoogle Scholar

  • [16] D. V. Kovkov, V. M. Kolbanov, D. A. Molodtsov, Soft sets theory-based optimization, Journal of Computer and Systems Sciences International, vol. 46, no. 6, pp. 872-880, 2007Google Scholar

  • [17] M. M. Mushrif, S. Sengupta, A. K. Ray, Texture classification using a novel, soft set theory based classification algorithm, in P. J. Narayanan, S. K. Nayar, H. Y. Shum (Eds.), Proceedings of the 7th Asian Conference on Computer Vision, 2006, Lecture Notes in Computer Science, vol. 3851, pp. 246-254Google Scholar

  • [18] P. K. Maji, R. Biswas, A. R. Roy, Soft sets theory, Comput. Math. Appl., vol. 45, pp. 555-562, 2003CrossrefGoogle Scholar

  • [19] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., vol. 9, no. 3, pp. 589-602, 2001Google Scholar

  • [20] X. B. Yang, T. Y. Lin, J. Y. Yang, Y. Li, D. Y. Yu, Combination of interval-valued fuzzy set and soft set, Comput. Math. Appl., vol. 58, pp. 521-527, 2009Web of ScienceGoogle Scholar

  • [21] P. K. Maji, More on intuitionistic fuzzy soft sets, in H. Sakai, M. K. Chakraborty, A. E. Hassanien, D. Slezak, W. Zhu (Eds.), Proceedings of the 12th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009), Lecture Notes in Computer Science, vol. 5908, pp. 231-240Google Scholar

  • [22] P.K. Maji, R. Biswas, A.R. Roy, Intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics vol. 9, no. 3, pp. 677-692, 2001 Google Scholar

  • [23] P.K. Maji, A.R. Roy, R. Biswas, On intuitionistic fuzzy soft sets, Journal of Fuzzy Mathematics, vol. 12, no. 3, pp. 669-683, 2004Google Scholar

  • [24] P.K. Maji, An application of intuitionistic fuzzy soft sets in a decision making problem, in IEEE International Conference on Progress in Informatics and Computing (PIC), vol. 1, December 10-12, 2010, pp. 349-351Google Scholar

  • [25] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, pp. 87- 96, 1986CrossrefGoogle Scholar

  • [26] Y. Jiang, Y. Tang, Q. Chen, H. Liu, J. Tang, Interval-valued intuitionistic fuzzy soft sets and their properties, Comput. Math. Appl., vol. 60, pp. 906-918, 2010Web of ScienceCrossrefGoogle Scholar

  • [27] F. Feng, Y. Li, V. Leoreanu-Fotea, Application of level soft sets in decision making based on intervalvalued fuzzy soft sets, Comput. Math. Appl., vol. 60, pp. 1756-1767, 2010CrossrefGoogle Scholar

  • [28] H. Qin, X. Ma, T. Herawan, J. M. Zain, An adjustable approach to interval-valued intuitionistic fuzzy soft sets based decision making, in N. T. Nguyen, C. G. Kim, and A. Janiak (Eds.), Proceedings of ACIIDS, 2011, LNAI, vol. 6592, pp. 80-89, Springer-Verlag Berlin HeidelbergGoogle Scholar

  • [29] Z. Zhang, C. Wang, D. Tian, K. Li, A novel approach to interval-valued intuitionistic fuzzy soft set based decision making, Applied Mathematical Modelling, vol. 38, no. 4, pp. 1255-1270, 2014CrossrefWeb of ScienceGoogle Scholar

  • [30] J. Mao, D. Yao, C. Wang, Group decision making methods based on intuitionistic fuzzy soft matrices, Applied Mathematical Modelling, vol. 37, pp. 6425-6436, 2013 Web of ScienceGoogle Scholar

  • [31] S. Das, S. Kar, Group decision making in medical system: An intuitionistic fuzzy soft set approach, Applied Soft Computing, 24. pp. 196-211, 2014, http://dx.doi.org/10.1016/j.asoc.2014.06.050Web of ScienceCrossrefGoogle Scholar

  • [32] S. Das, M. B. Kar, T. Pal, S. Kar, Multiple Attribute Group Decision Making using Interval-Valued Intuitionistic Fuzzy Soft Matrix, Proc. of IEEE International Conference on Fuzzy Systems (FUZZIEEE), Beijing, July 6-11, 2014, pp. 2222 - 2229, doi: 10.1109/FUZZ-IEEE.2014.6891687CrossrefGoogle Scholar

  • [33] S. Das, M. B. Kar, S. Kar, Group Multi Criteria Decision Making using Intuitionistic Multi Fuzzy Sets, Journal of Uncertainty Analysis and Applications, 1:10, 2013, doi:10.1186/2195-5468-1-10CrossrefGoogle Scholar

  • [34] S. Das, S. Kar, Intuitionistic Multi Fuzzy Soft Set and its Application in Decision Making, in P. Maji et al. (Eds.), Proceedings of Fifth International Conference on Pattern Recognition and Machine Intelligence (PReMI), 2013, Lecture Notes in Computer Science, vol. 8251, pp. 587-592Google Scholar

  • [35] S. Das, S. Kar, The Hesitant Fuzzy Soft Set and its Application in Decision Making, in Proceedings of International Conference on Facets of Uncertainties and Applications (ICFUA), 2013, Lecture Notes in Computer Science, Springer, unpublishedGoogle Scholar

  • [36] S. Chen, J. Tan, Handling multi criteria fuzzy decision-making problems based on vague set theory, Fuzzy Sets and Systems, vol. 67, no.2, pp. 163-172, 1994 Google Scholar

About the article

Published Online: 2014-12-30

Published in Print: 2014-01-01


Citation Information: Journal of Artificial Intelligence and Soft Computing Research, ISSN (Online) 2083-2567, DOI: https://doi.org/10.2478/jaiscr-2014-0025.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sujit Das, Saurabh Kumar, Samarjit Kar, and Tandra Pal
Journal of King Saud University - Computer and Information Sciences, 2017
[2]
Sani Danjuma, Tutut Herawan, Maizatul Akmar Ismail, Haruna Chiroma, Adamu I. Abubakar, and Akram M. Zeki
IEEE Access, 2017, Volume 5, Page 4671

Comments (0)

Please log in or register to comment.
Log in