Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial Intelligence and Soft Computing Research

The Journal of Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology

4 Issues per year

Open Access
See all formats and pricing
More options …

Automated Approach To Classification Of Mine-Like Objects Using Multiple-Aspect Sonar Images

Xiaoguang Wang / Xuan Liu / Nathalie Japkowicz / Stan Matwin
  • Faculty of Computer Science, Dalhousie University, Canada Institute of Computer Science, Polish Academy of Sciences, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-01 | DOI: https://doi.org/10.1515/jaiscr-2015-0004


In this paper, the detection of mines or other objects on the seabed from multiple side-scan sonar views is considered. Two frameworks are provided for this kind of classification. The first framework is based upon the Dempster–Shafer (DS) concept of fusion from a single-view kernel-based classifier and the second framework is based upon the concepts of multi-instance classifiers. Moreover, we consider the class imbalance problem which is always presents in sonar image recognition. Our experimental results show that both of the presented frameworks can be used in mine-like object classification and the presented methods for multi-instance class imbalanced problem are also effective in such classification.


  • [1] B. Zerr, B. Stage. Three-dimensional reconstruction of underwater objects from a sequence of sonar images, Proceedings of the IEEE International Conference on Image Processing, pp. 927–930, (1996).Google Scholar

  • [2] B. Zerr, B. Stage and A. Guerrero, Automatic Target Classification Using Multiple Sidescan Sonar Images of Different Orientations, SACLANT CEN Memorandum SM-309 (1997).Google Scholar

  • [3] B. Zerr, E. Bovio, B. Stage, Automatic mine classification approach based on AUV manoeuverability and cots side scan sonar, Proceedings of Goats 2001 Conference, La Spezia, Italy, (2001).Google Scholar

  • [4] M. Couillard, J. Fawcett, M. Davison and V. Myers, Optimizing time-limited multi-aspect classification, Proceedings of the Institute of Acoustics 29(6), 89-96 (2007).Google Scholar

  • [5] J. Fawcett, V. Myers, D. Hopkin, A. Crawford, M. Couillard, B. Zerr. Multiaspect classification of sidescan sonar images: Four different approaches to fusing single-aspect information, Oceanic Engineering, IEEE Journal of 35(4): 863–876 (2010).Web of ScienceGoogle Scholar

  • [6] S. Reed, Y. Petillot, J. Bell, Model-based approach to the detection and classification of mines in side scan sonar, Applied Optics 43(2): 237–246. (2004).CrossrefGoogle Scholar

  • [7] S. Reed, Y. Petillot, J. Bell, Automated approach to classification of mine-like features in sidescan sonar using highlight and shadow information, IEE Proc. Radar, Sonar & Navigation 151 (No.1), 48-56, (2004).Google Scholar

  • [8] V. Myers, D. P. Williams, A POMDP for multiview target classification with an autonomous underwater vehicle, OCEANS, pp. 1-5, (2010).Google Scholar

  • [9] V. Myers, D. P. Williams, Adaptive Multiview Target Classification in Synthetic Aperture Sonar Images Using a Partially Observable Markov Decision Process, Oceanic Engineering, IEEE Journal of, On page(s): 45 - 55, Volume: 37 Issue: 1, Jan. (2012)Web of ScienceGoogle Scholar

  • [10] D. Williams, V. Myers, and M. Silvious, ”Mine Classification with Imbalanced Data,” IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 3, pp. 528-532, July 2009.CrossrefGoogle Scholar

  • [11] G. Dobeck, “Fusing sonar images for mine detection and classification,” Proc. SPIE—Int. Soc. Opt. Eng., vol. 3710, 1999, DOI: 10.1117/12.357082.CrossrefGoogle Scholar

  • [12] J. Tucker, N. Klausner, and M. Azimi-Sadjadi, “Target detection in M-disparate sonar platforms using multichannel hypothesis testing,” in Proc. OCEANS Conf., Quebec City, QC, Canada, 2008, DOI: 10.1109/OCEANS.2008.5151818.CrossrefGoogle Scholar

  • [13] M. Azimi-Sadjadi, A. Jamshidi, and G. Dobeck, “Adaptive underwater target classification with multi-aspect decision feedback,” Proc. SPIE— Int. Soc. Opt. Eng., vol. 4394, 2001, DOI: 10.1117/12.445444.CrossrefGoogle Scholar

  • [14] X. Xu and E. Frank. Logistic regression and boosting for labeled bags of instances. In Lecture Notes in Computer Science, volume 3056, pages 272–281, April 2004.Google Scholar

  • [15] Hall, D. L. and Steinberg, A.. Dirty Secrets in Multisensor Data Fusion, http://www.dtic.mil. (2001).

  • [16] Blockeel, H., Page, D., Srinivasan, A.: Multiinstance tree learning. In: ICML (2005).Google Scholar

  • [17] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, (1993).Google Scholar

  • [18] Hosmer, David W.; Lemeshow, Stanley. Applied Logistic Regression (2nd ed.). Wiley. (2000).Google Scholar

  • [19] Freund, Y., Schapire,R.E.: Experiments with a new boosting algorithm. In: Machine Learning: Proceedings of the Thirteenth International Conference, pp. 148–156 (1996)Google Scholar

  • [20] Kubat, M., & Matwin, S.: Addressing the curse of imbalanced training sets: One-sided selection. In: Proceddings of the Fourteenth International Conference on Machine Learning, 179-186 (1997)Google Scholar

  • [21] Dietterich, T., Lathrop, R., Lozano-Perez, T.: Solving the multiple instance problem with the axisparallel rectangles. In: Artificial Intelligence, 89(1-2), 31–71 (1997)Google Scholar

  • [22] Maron, O., Lozano-Pz T.: A framework for multiple instance learning. In: Proc. of the 1997 Conf. on Advances in Neural Information Processing Systems 10, p.570-576 (1998)Google Scholar

  • [23] Fan, W., Stolfo,S.J., Zhang,J., Chan,P.K.: Ada-Cost: Misclassification Cost-Sensitive Boosting. In: Proc. Int’l Conf. Machine Learning, pp. 97-105 (1999)Google Scholar

  • [24] Schapire,R.E., Singer,Y.: Improved boosting algorithms using confidence-rated predictions. In: Machine Learning, 37 (3) 297–336 (1999)CrossrefGoogle Scholar

  • [25] Ting, K.M.: A Comparative Study of Cost-Sensitive Boosting Algorithms. In: Proc. Int’l Conf. Machine Learning, pp. 983-990 (2000)Google Scholar

  • [26] Wang, J., Zucker, J.D.: Solving the multipleinstance problem: A lazy learning approach. In: ICML (2000)Google Scholar

  • [27] Japkowicz, N.: Learning from Imbalanced Data Sets: A Comparison of Various Strategies. In: Proc. Am. Assoc. for Artificial Intelligence(AAAI) Workshop Learning from Imbalanced Data Sets, pp. 10-15. (Technical Report WS-00-05) (2000)Google Scholar

  • [28] Zhang, Q., Goldman, S. A.: EM-DD: An improved multiple instance learning technique. In: Neural Information Processing Systems 14 (2001)Google Scholar

  • [29] Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proc. Int’l Joint Conf. Artificial Intelligence, pp. 973-978 (2001)Google Scholar

  • [30] Ting, K.M.: An Instance-Weighting Method to Induce Cost-Sensitive Trees. In: IEEE Trans. Knowledge and Data Eng., vol. 14, no. 3, pp. 659-665 (2002)Google Scholar

  • [31] Chawla,N. V., Bowyer,K. W., Hall,L. O., Kegelmeyer, W. P.: SMOTE: Synthetic Minority Over-sampling Technique. In: Journal of Artificial Intelligence Research, 16: 321-357 (2002)Google Scholar

  • [32] Zhang, M.L., Goldman, S.: Em-dd: An improved multi-instance learning technique. In: NIPS (2002)Google Scholar

  • [33] Andrews, S., Tsochandaridis, I., Hofman, T.: Support vector machines for multiple instance learning. In: Adv. Neural. Inf. Process. Syst. 15, 561–568 (2003)Google Scholar

  • [34] Batista, G.E.A.P.A., Prati,R.C., Monard,M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. In: ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 20-29 (2004)Google Scholar

  • [35] Blockeel, H., Page, D., Srinivasan, A.: Multiinstance tree learning. In: ICML (2005)Google Scholar

  • [36] Sun,Y., Kamel,M.S., Wong, A.K.C., Wang, Y.: Cost-Sensitive Boosting for Classification of Imbalanced Data. In: Pattern Recognition, vol. 40, no. 12, pp. 3358-3378 (2007)Web of ScienceCrossrefGoogle Scholar

  • [37] Foulds, J., Frank, E.: Revisiting multiple-instance learning via embedded instance selection. In: W. Wobcke & M. Zhang(Eds), 21st Australasian Joint Conference on Artificial Intelligence Auckland, New Zealand, (pp. 300-310) (2008)Google Scholar

  • [38] Leistner, C., Saffari, A., and Bischof, H.: MIForests: Multiple Instance Learning with Randomized Trees. In: Proc. ECCV (2010)Google Scholar

  • [39] Bjerring, L., Frank, E.: Beyond trees: Adopting MITI to learn rules and ensemble classifiers for multi-instance data. In: D. Wang & M. Reynolds (Eds.), AI 2011, LNAI 7106 (pp. 41-50) (2011)Google Scholar

  • [40] Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press (2011)Google Scholar

  • [41] Shawe-Taylor, J. and Cristianini, N.: Further results on the margin distribution. In: Proceedings of the 12th Conference on Computational Learning Theory, 278-285 (1999)Google Scholar

  • [42] Morik, K., Brockhausen, P., Joachims, T.: Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring. In: ICML: 268-277 (1999)Google Scholar

  • [43] Veropoulos, K., Campbell, C., & Cristianini, N.: Controlling the sensitivity of support vector machines. In: Proceedings of the International Joint Conference on Artificial Intelligence, 55–60. (1999)Google Scholar

  • [44] Chih-Chung Chang and Chih-Jen Lin.: LIBSVM : a library for support vector machines. In: ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, (2011)Google Scholar

  • [45] Chin-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin.: A practical guide to support vector classification. In: Technical Report, National Taiwan University. (2010)Google Scholar

  • [46] Bergstra, James; Bengio, Yoshua. :Random Search for Hyper-Parameter Optimization. In: J. Machine Learning Research 13: 281-305. (2012)Google Scholar

  • [47] Wang, X., Shao, H., Japkowicz, N., Matwin, S., Liu, X., Bourque, A., Nguyen, B.: Using SVM with Adaptively Asymmetric Misclassification Costs for Mine-Like Objects Detection. In: ICMLA (2012)Google Scholar

  • [48] Wang, X., Matwin, S., Japkowicz, N., Liu, X.: Cost-Sensitive Boosting Algorithms for Imbalanced Multi-instance Datasets. In: Canadian Conference on AI (2013)Google Scholar

  • [49] Hosmer, David W. Lemeshow, Stanley: Applied Logistic Regression. Wiley. ISBN 0-471-35632-8.2000Google Scholar

About the article

Published Online: 2015-03-01

Published in Print: 2014-04-01

Citation Information: Journal of Artificial Intelligence and Soft Computing Research, Volume 4, Issue 2, Pages 133–148, ISSN (Online) 2083-2567, DOI: https://doi.org/10.1515/jaiscr-2015-0004.

Export Citation

© Academy of Management (SWSPiZ), Lodz. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Yoojeong Seo, Baeksan On, Sungbin Im, Taebo Shim, and Iksu Seo
Applied Sciences, 2018, Volume 8, Number 1, Page 116

Comments (0)

Please log in or register to comment.
Log in