Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Artificial Intelligence and Soft Computing Research

The Journal of Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology

4 Issues per year

Open Access
Online
ISSN
2083-2567
See all formats and pricing
More options …

A New Mechanism for Data Visualization with Tsk-Type Preprocessed Collaborative Fuzzy Rule Based System

Mukesh Prasad
  • Corresponding author
  • Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Province of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yu-Ting Liu
  • Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan Australia
  • Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dong-Lin Li
  • Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan, Province of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chin-Teng Lin
  • Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan Australia
  • Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rajiv Ratn Shah / Om Prakash Kaiwartya
Published Online: 2016-12-17 | DOI: https://doi.org/10.1515/jaiscr-2017-0003

Abstract

A novel data knowledge representation with the combination of structure learning ability of preprocessed collaborative fuzzy clustering and fuzzy expert knowledge of Takagi- Sugeno-Kang type model is presented in this paper. The proposed method divides a huge dataset into two or more subsets of dataset. The subsets of dataset interact with each other through a collaborative mechanism in order to find some similar properties within each-other. The proposed method is useful in dealing with big data issues since it divides a huge dataset into subsets of dataset and finds common features among the subsets. The salient feature of the proposed method is that it uses a small subset of dataset and some common features instead of using the entire dataset and all the features. Before interactions among subsets of the dataset, the proposed method applies a mapping technique for granules of data and centroid of clusters. The proposed method uses information of only half or less/more than the half of the data patterns for the training process, and it provides an accurate and robust model, whereas the other existing methods use the entire information of the data patterns. Simulation results show the proposed method performs better than existing methods on some benchmark problems.

Keywords: fuzzy interference system; collaborative clustering; fuzzy logic; big data; data visualization

References

  • [1] E. H. Mamdani and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-machine Studies, vol. 7, pp. 1-13, 1975.Google Scholar

  • [2] T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Transaction on System, Man, and Cybernetic, vol. 15, pp. 116-132, 1985.Google Scholar

  • [3] L. Rutkowski and K. Cpaka, Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems, IEEE Transaction on Fuzzy Systems, vol. 13, no. 1, pp. 140-151, 2005.Google Scholar

  • [4] L. Rutkowski and K. Cpaka, Flexible neuro-fuzzy systems, IEEE Transaction on Neural Networks, vol. 14, no. 3, pp. 554-574, 2003.Google Scholar

  • [5] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, 1981.Google Scholar

  • [6] J. C. Bezdek, R. Ehrlich, and W. Full, FCM: the fuzzy C-means clustering algorithm, Computers and Geosciences, vol. 10, no. 2-3, pp. 191-203, 1984.Google Scholar

  • [7] W. Pedrycz, Knowledge-based clustering: from data to information granules, A JohnWiley & Sons, Inc., Publication, 2005.Google Scholar

  • [8] W. Pedrycz, Collaborative fuzzy clustering, Pattern Recognition Letters, vol. 23, no. 14, pp. 1675-1686, 2002.Google Scholar

  • [9] W. Pedrycz and P. Rai, Collaborative Fuzzy Clustering with the use of Fuzzy C-Means and its Quantification, Fuzzy Sets and System, vol. 159, no. 18, pp. 2399-2427, 2008.Google Scholar

  • [10] C. T. Lin, M. Prasad, and J. Y Chang, Designing Mamdani Type Fuzzy Rule Using a Collaborative FCM Scheme, International Conference on Fuzzy Theory and Its Application, 2013.Google Scholar

  • [11] http://www.mathworks.com/help/fuzzy/genfis2.htmlGoogle Scholar

  • [12] R. Babuska, Fuzzy Modeling for Control, Norwell, MA: Kluwer, 1998.Google Scholar

  • [13] J. C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters, Journal of Cybernetics, vol. 3, pp. 32-57, 1973.Google Scholar

  • [14] F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster Analysis: Methods for Classification. Data Analysis and Image Recognition, New York: Wiley, 1999.Google Scholar

  • [15] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. C. P. L. F. de Carvalho, A survey of evolutionary algorithms for clustering, IEEE Transaction on System Man Cybernetics- part-c, vol. 39, no. 2, pp. 133-155, 2009.Google Scholar

  • [16] R. Xu and D. Wunsch, Survey of clustering algorithms, IEEE Transaction on Neural Networks, vol. 16, no. 3, pp. 645-678, 2005.Google Scholar

  • [17] R. R. Yager and D. P. Filev, Approximate clustering via the mountain method, IEEE Transaction on System, Man, Cybernetics, vol. 24, no. 8, pp. 1279-1284,1994.Google Scholar

  • [18] P. R. Kersten, Implementation issues in the fuzzy c-medians clustering algorithm, In Proceeding 6th IEEE International Conference on Fuzzy Systems, vol. 2, pp. 957-962, 1997.Google Scholar

  • [19] J. F. Kolen and T. Hutcheson, Reducing the time complexity of the fuzzy c-means algorithm, IEEE Transaction on Fuzzy Systems, vol. 10, no. 2, pp. 263-267, 2002.Google Scholar

  • [20] M. Sugeno and G. T. Kang, Structure identification of fuzzy model, Fuzzy Sets Systems, vol. 28, no. 1, pp. 15-33, 1988.Google Scholar

  • [21] C. W. Ting and C. Quek, A Novel Blood Glucose Regulation Using - TSK FCMAC: A Fuzzy CMAC Based on the Zero-Ordered TSK Fuzzy Inference Scheme, IEEE Transaction on Neural Networks, vol. 20, no. 5, pp. 856-871, 2009.Google Scholar

  • [22] J. R. Castro, O. Castillo, P. Melin, and A. Rodrguez-Daz, A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks, Information Science, vol. 179, no. 13, pp. 2175-2193, 2009.Google Scholar

  • [23] H. Song, C. Miao, Z. Shen, Y. Miao, and B. S. Lee, A fuzzy neural network with fuzzy impact grades, Neurocomputing, vol. 72, no. 13-15, pp. 3098-3122, 2009.Google Scholar

  • [24] D. Kim and C. Kim, Forecasting time series with genetic fuzzy predictor ensembles, IEEE Transaction on Fuzzy Systems, vol. 5, no. 4, pp. 523-535, 1997.Google Scholar

  • [25] M. Prasad, C. T. Lin, C. T. Yang and A. Saxena, Vertical Collaborative Fuzzy C-Means for Multiple EEG Data Sets, Springer Lecture Notes in Computer Science, vol. 8102, pp. 246-257, 2013.Google Scholar

  • [26] R. N. Dave, and K. Bhaswan, Adaptive fuzzy cshells clustering and detection of ellipses, IEEE Transaction on Neural Networks, vol. 3, no. 5, pp. 643-662, 1992.Google Scholar

  • [27] Y. Man, and I. Gath, Detection and separation of ring-shaped clusters using fuzzy clustering, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 16, no. 8, pp. 855-861, 1994.Google Scholar

  • [28] R. Krishnapuram, O. Nasraoui, and J. Keller, The fuzzy c spherical shells algorithm: a new approach, IEEE Transaction on Neural Networks, vol. 3, no. 5, pp. 663-671, 1992.Google Scholar

  • [29] M. Prasad, D. L. Li, Y. T. Liu, L. Siana, C. T. Lin, and A. Saxena, A Preprocessed Induced Partition Matrix Based Collaborative Fuzzy Clustering for Data Analysis, IEEE International Conference of Fuzzy Systems, pp. 1553-1558, 2014.Google Scholar

About the article

Published Online: 2016-12-17

Published in Print: 2017-01-01


Citation Information: Journal of Artificial Intelligence and Soft Computing Research, ISSN (Online) 2083-2567, DOI: https://doi.org/10.1515/jaiscr-2017-0003.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in